- Nomenclature is the process of naming chemical compounds. - Organic chemistry has a completely different set of rules for nomenclature. - There are two types of inorganic compounds that can be formed: ionic compounds and molecular compounds. #### Note: - Acid formulas often begin with H - An acid is a substance that dissociates into hydrogen ions (H⁺) and anions in water. - binary acids make by two elements: HCl, H₂S - oxy-acids: H₂SO₄, HNO₃ - Polyatomic anion acid: -ate $$ightarrow$$ -ic acid -ate $$\rightarrow$$ -ic acid -ite \rightarrow -ous acid | | Selection of Oxy acids | | | | | | |-------------|------------------------|------------------------|------------------|--|--|--| | Anion (ion) | Acid | Anion (ion) | Acid | | | | | SO_4^{2-} | H_2SO_4 | PO_4^{3-} | H_3PO_4 | | | | | Sulfate | Sulfuric acid | Phosphate | Phosphoric acid | | | | | SO_3^{2-} | H_2SO_3 | PO_3^{3-} | H_3PO_3 | | | | | Sulfite | Sulfurous acid | Phosphite | Phosphorous acid | | | | | NO_3^- | HNO_3 | <i>IO</i> ₃ | HIO_3 | | | | | Nitrate | Nitric acid | lodate | lodic acid | | | | | NO_2^- | HNO_2 | $C_2H_3O_2^-$ | $HC_2H_3O_2$ | | | | | Nitrite | Nitrous acid | Acetate | Acetic acid | | | | | CO_3^{2-} | H_2CO_3 | $C_2 O_4^{2-}$ | $H_2C_2O_4$ | | | | | Carbonate | Carbonic acid | Oxalate | Oxalic acid | | | | | BO_3^{3-} | H_3BO_3 | BrO_3^- | $HBrO_3$ | | | | | Borate | Boric acid | Bromate | Bromic acid | | | | | The Greek numerical prefixes are used for naming | | | | | | | | |---|--|--|--|--|--|--|--| | 1 2 3 4 5 6 7 8 9 10 | | | | | | | | | mono di tri tetra penta hepta hexa octa nano deca | | | | | | | | # Polyatomic (3 or more elements) compounds | Formulas and Names of Some Polyatomic Ions | | | | | | | |--|-----------------------|--|----------------------------------|--|--|--| | Formula | Name | Formula | Name | | | | | NH ⁴⁺ | ammonium | CO_3^{2-} | carbonate | | | | | H ₃ O ⁺ | hydronium | OCN ⁻ | cyanate | | | | | OH- | hydroxide | SCN ⁻ | thiocyanate | | | | | CN- | cyan <mark>ide</mark> | $S_2O_3^{2-}$ | thiosulfate | | | | | O_2^{2-} | peroxide | CrO ₄ ²⁻ | chromate | | | | | N ₃ - | azide | Cr ₂ O ₇ ²⁻ | dichromate | | | | | NO ₂ - | nitr <mark>ite</mark> | SO ₄ ²⁻ | sulfate | | | | | NO ₃ - | nitrate | SO ₃ ² - | sulfite | | | | | CIO- | hypochlorite | PO ₄ ³⁻ | phosphate | | | | | CIO ₂ - | chlorite | PO ₄ ³⁻ | monohydrogen phosphate | | | | | CIO ₃ - | chlorate | PO ₄ ³⁻ | dihydrogen phosphate | | | | | CIO ₄ - | perchlorate | HCO ₃ - | hydrogen carbonate (bicarbonate) | | | | | MnO ₄ - | permanganate | HSO ₄ - | hydrogen sulfate (bisulfate) | | | | | C ₂ H ₃ O ₂ - | acetate (OAc-) | HSO ₃ - | hydrogen sulfite (bisulfite) | | | | | $C_2O_4^{2-}$ | oxalate | | | | | | ### Note: - The transition metals may form more than one ion. - This is indicated by assigning a Roman numeral after the metal. The Roman numeral denotes the charge and the oxidation state of the transition metal ion. | Selected Transition Metal and Metal Cations: | | | | | |--|------------------------------|-------------------------------|----------------------------|--| | +1 Charge | +2 Charge | +3 Charge | +4 Charge | | | Copper(I): Cu+ | Copper(II): Cu ²⁺ | Aluminum: Al ³⁺ | Lead(IV): Pb ⁴⁺ | | | Silver: Ag+ | Iron(II): Fe ²⁺ | Iron(III): Fe ³⁺ | Tin(IV): Sn ⁴⁺ | | | | Cobalt(II): Co ²⁺ | Cobalt(III): Co ³⁺ | | | | | Tin(II): Sn ²⁺ | | | | | | Lead(II): Pb ²⁺ | | | | | | Nickel: Ni ²⁺ | | | | | | Zinc: Zn ²⁺ | | | | | Transition Metal Ion with Roman Numeral | Latin name | |--|------------| | Copper (I): Cu ⁺ | Cuprous | | Copper (II): Cu ²⁺ | Cupric | | Iron (II): Fe ²⁺ | Ferrous | | Iron (III): Fe ³⁺ | Ferric | | Lead (II): Pb ²⁺ | Plumbous | | Lead (IV): Pb ⁴⁺ | Plumbic | | Mercury (I): Hg ₂ ²⁺ | Mercurous | | Mercury (II): Hg ²⁺ | Mercuric | | Tin (II): Sn ²⁺ | Stannous | | Tin (IV): Sn ⁴⁺ | Stannic | #### Note: • We do not use Roman numerals after names of: Aluminum, Zinc, and Silver, because these metals only exist in one ion. ## Compounds between Nonmetals and Nonmetals (Molecular Compounds): Compounds that consist of a nonmetal bonded to a nonmetal are commonly known as **Molecular Compounds**, where the element with the positive oxidation state is written first. In many cases, nonmetals form more than one binary compound, so **prefixes** are used to distinguish them. #### Inorganic Nomenclature | Number of atoms & Prefixes | | | | | | | | | | |----------------------------|----|-----|-------|-------|------|-------|------|------|------| | 1 2 3 4 5 6 7 8 9 10 | | | | | | | | | | | mono | di | tri | tetra | penta | hexa | Hepta | octa | nano | deca | Example: CO = carbon mon oxide $BCl_3 = boron trichloride$ CO_2 = carbon **di**oxide N_2O_5 = **di**nitrogen **pent**oxide Note: • The prefix *mono*- is not used for the first element. • An acid is a substance that dissociates into hydrogen ions (H⁺) and anions <u>in water</u>. | Selected common binary acids | | | | | | |------------------------------|-------------------|---------------|--------------------|--|--| | Gas | State | Aqueous State | | | | | Formula | Name | Formula | Name | | | | $HF_{(g)}$ | Hydrogen fluoride | $HF_{(aq)}$ | Hydrofluoric acid | | | | $HBr_{(g)}$ | Hydrogen bromide | $HBr_{(aq)}$ | Hydrobromic acid | | | | $HCl_{(g)}$ | Hydrogen chloride | $HCl_{(aq)}$ | Hydrochloric acid | | | | $H_2S_{(g)}$ | Hydrogen sulfide | $H_2S_{(aq)}$ | Hydrosulfuric acid | | | ## **Polyatomic Ions** Polyatomic (meaning two or more atoms) are joined together by covalent bonds. | | Increasing number of | oxygen atoms> | | |--------------|------------------------|------------------------|-------------------------| | hypo — ite | — ite | — ate | per — ate | | | Examp | ole: | | | ClO- | ClO_2^- | ClO_3^- | ClO_4^- | | hypochlorite | chlor <mark>ite</mark> | chlor <mark>ate</mark> | perchlorate perchlorate | | | Common Polyator | nic ions | | | Name: Cation Anion | Formula | |--------------------|---| | Ammonium ion | NH ₄ ⁺ | | Hydronium ion | H ₃ O ⁺ | | Acetate ion | $C_2H_3O_2^{-1}$ | | Arsenate ion | AsO ₄ ³ - | | Carbonate ion | CO ₃ ² - | | Hypochlorite ion | CIO | | Chlorite ion | CIO ₂ - | | Chlorate ion | CIO ₃ - | | Perchlorate ion | CIO ₄ | | Chromate ion | CrO ₄ ² - | | Dichromate ion | Cr ₂ O ₇ ² - | | Cyanide ion | CN ⁻ | | Hydroxide ion | OH ⁻ | | Nitrite ion | NO ₂ - | | Nitrate ion | NO ₃ - | | Oxalate ion | $C_2O_4^{2-}$ | | Permanganate ion | MnO ₄ ⁻ | | Phosphate ion | PO ₄ ³⁻ | | Sulfite ion | SO ₃ ²⁻ | | Sulfate ion | SO ₄ ²⁻ | | Thiocyanate ion | SCN ⁻ | | Thiosulfate ion | S ₂ O ₃ ²⁻ |