- Nomenclature is the process of naming chemical compounds.
- Organic chemistry has a completely different set of rules for nomenclature.
- There are two types of inorganic compounds that can be formed: ionic compounds and molecular compounds.

Note:

- Acid formulas often begin with H
- An acid is a substance that dissociates into hydrogen ions (H⁺) and anions in water.
- binary acids make by two elements: HCl, H₂S
- oxy-acids: H₂SO₄, HNO₃
- Polyatomic anion acid:

-ate
$$ightarrow$$
 -ic acid

-ate
$$\rightarrow$$
 -ic acid
-ite \rightarrow -ous acid

	Selection of Oxy acids					
Anion (ion)	Acid	Anion (ion)	Acid			
SO_4^{2-}	H_2SO_4	PO_4^{3-}	H_3PO_4			
Sulfate	Sulfuric acid	Phosphate	Phosphoric acid			
SO_3^{2-}	H_2SO_3	PO_3^{3-}	H_3PO_3			
Sulfite	Sulfurous acid	Phosphite	Phosphorous acid			
NO_3^-	HNO_3	<i>IO</i> ₃	HIO_3			
Nitrate	Nitric acid	lodate	lodic acid			
NO_2^-	HNO_2	$C_2H_3O_2^-$	$HC_2H_3O_2$			
Nitrite	Nitrous acid	Acetate	Acetic acid			
CO_3^{2-}	H_2CO_3	$C_2 O_4^{2-}$	$H_2C_2O_4$			
Carbonate	Carbonic acid	Oxalate	Oxalic acid			
BO_3^{3-}	H_3BO_3	BrO_3^-	$HBrO_3$			
Borate	Boric acid	Bromate	Bromic acid			

The Greek numerical prefixes are used for naming							
1 2 3 4 5 6 7 8 9 10							
mono di tri tetra penta hepta hexa octa nano deca							

Polyatomic (3 or more elements) compounds

Formulas and Names of Some Polyatomic Ions						
Formula	Name	Formula	Name			
NH ⁴⁺	ammonium	CO_3^{2-}	carbonate			
H ₃ O ⁺	hydronium	OCN ⁻	cyanate			
OH-	hydroxide	SCN ⁻	thiocyanate			
CN-	cyan <mark>ide</mark>	$S_2O_3^{2-}$	thiosulfate			
O_2^{2-}	peroxide	CrO ₄ ²⁻	chromate			
N ₃ -	azide	Cr ₂ O ₇ ²⁻	dichromate			
NO ₂ -	nitr <mark>ite</mark>	SO ₄ ²⁻	sulfate			
NO ₃ -	nitrate	SO ₃ ² -	sulfite			
CIO-	hypochlorite	PO ₄ ³⁻	phosphate			
CIO ₂ -	chlorite	PO ₄ ³⁻	monohydrogen phosphate			
CIO ₃ -	chlorate	PO ₄ ³⁻	dihydrogen phosphate			
CIO ₄ -	perchlorate	HCO ₃ -	hydrogen carbonate (bicarbonate)			
MnO ₄ -	permanganate	HSO ₄ -	hydrogen sulfate (bisulfate)			
C ₂ H ₃ O ₂ -	acetate (OAc-)	HSO ₃ -	hydrogen sulfite (bisulfite)			
$C_2O_4^{2-}$	oxalate					

Note:

- The transition metals may form more than one ion.
- This is indicated by assigning a Roman numeral after the metal. The Roman numeral denotes the charge and the oxidation state of the transition metal ion.

Selected Transition Metal and Metal Cations:				
+1 Charge	+2 Charge	+3 Charge	+4 Charge	
Copper(I): Cu+	Copper(II): Cu ²⁺	Aluminum: Al ³⁺	Lead(IV): Pb ⁴⁺	
Silver: Ag+	Iron(II): Fe ²⁺	Iron(III): Fe ³⁺	Tin(IV): Sn ⁴⁺	
	Cobalt(II): Co ²⁺	Cobalt(III): Co ³⁺		
	Tin(II): Sn ²⁺			
	Lead(II): Pb ²⁺			
	Nickel: Ni ²⁺			
	Zinc: Zn ²⁺			

Transition Metal Ion with Roman Numeral	Latin name
Copper (I): Cu ⁺	Cuprous
Copper (II): Cu ²⁺	Cupric
Iron (II): Fe ²⁺	Ferrous
Iron (III): Fe ³⁺	Ferric
Lead (II): Pb ²⁺	Plumbous
Lead (IV): Pb ⁴⁺	Plumbic
Mercury (I): Hg ₂ ²⁺	Mercurous
Mercury (II): Hg ²⁺	Mercuric
Tin (II): Sn ²⁺	Stannous
Tin (IV): Sn ⁴⁺	Stannic

Note:

• We do not use Roman numerals after names of: Aluminum, Zinc, and Silver, because these metals only exist in one ion.

Compounds between Nonmetals and Nonmetals (Molecular Compounds):

Compounds that consist of a nonmetal bonded to a nonmetal are commonly known as **Molecular Compounds**, where the element with the positive oxidation state is written first. In many cases, nonmetals form more than one binary compound, so **prefixes** are used to distinguish them.

Inorganic Nomenclature

Number of atoms & Prefixes									
1 2 3 4 5 6 7 8 9 10									
mono	di	tri	tetra	penta	hexa	Hepta	octa	nano	deca

Example:

CO = carbon mon oxide $BCl_3 = boron trichloride$

 CO_2 = carbon **di**oxide N_2O_5 = **di**nitrogen **pent**oxide

Note:

• The prefix *mono*- is not used for the first element.

• An acid is a substance that dissociates into hydrogen ions (H⁺) and anions <u>in water</u>.

Selected common binary acids					
Gas	State	Aqueous State			
Formula	Name	Formula	Name		
$HF_{(g)}$	Hydrogen fluoride	$HF_{(aq)}$	Hydrofluoric acid		
$HBr_{(g)}$	Hydrogen bromide	$HBr_{(aq)}$	Hydrobromic acid		
$HCl_{(g)}$	Hydrogen chloride	$HCl_{(aq)}$	Hydrochloric acid		
$H_2S_{(g)}$	Hydrogen sulfide	$H_2S_{(aq)}$	Hydrosulfuric acid		

Polyatomic Ions

Polyatomic (meaning two or more atoms) are joined together by covalent bonds.

	Increasing number of	oxygen atoms>	
hypo — ite	— ite	— ate	per — ate
	Examp	ole:	
ClO-	ClO_2^-	ClO_3^-	ClO_4^-
hypochlorite	chlor <mark>ite</mark>	chlor <mark>ate</mark>	perchlorate perchlorate
	Common Polyator	nic ions	

Name: Cation Anion	Formula
Ammonium ion	NH ₄ ⁺
Hydronium ion	H ₃ O ⁺
Acetate ion	$C_2H_3O_2^{-1}$
Arsenate ion	AsO ₄ ³ -
Carbonate ion	CO ₃ ² -
Hypochlorite ion	CIO
Chlorite ion	CIO ₂ -
Chlorate ion	CIO ₃ -
Perchlorate ion	CIO ₄
Chromate ion	CrO ₄ ² -
Dichromate ion	Cr ₂ O ₇ ² -
Cyanide ion	CN ⁻
Hydroxide ion	OH ⁻
Nitrite ion	NO ₂ -
Nitrate ion	NO ₃ -
Oxalate ion	$C_2O_4^{2-}$
Permanganate ion	MnO ₄ ⁻
Phosphate ion	PO ₄ ³⁻
Sulfite ion	SO ₃ ²⁻
Sulfate ion	SO ₄ ²⁻
Thiocyanate ion	SCN ⁻
Thiosulfate ion	S ₂ O ₃ ²⁻