Definition of Solution:

A homogeneous mixture of one or more substances (solutes) dispersed in a sufficient quantity of dissolving medium (solvent).

1) $\%(W / v):($ percent weight per volume)
a) Make 300 mL of 2.5% sucrose.

You need 2.5 grams of "table sugar" for each hundred milliliters. It means you need: $3 \times 2.5=7.5 \mathrm{~g}$
Dissolve 7.5 grams sugar in $\sim 250 \mathrm{~mL}$ and then add more water up to exact 300 mL .
b) There is $0.9 \%(\mathrm{w} / \mathrm{v})$ normal Saline. Make a one liter normal saline.
$1 \mathrm{~L}=1000 \mathrm{~mL}=10 \times 100 \mathrm{~mL}$
You need 10×0.9 grams NaCl . Dissolve 9 grams NaCl in about 950 mL water, and then add more water up to 1000 mL .
c) We need to make 250 mL of 0.1 M glucose ($\mathrm{MW}=180 \mathrm{~g} / \mathrm{mol}$).
$\mathrm{mol}=$ mass $/ \mathrm{MW}$
mass $=$ mol \times Mw
mass $=0.1 \times 180=18.0 \mathrm{~g}$
$18.0 \times(250 / 1000)=4.5 \mathrm{~g}$
(To have 0.1 M glucose, dissolve 4.5 g glucose in 250 mL water)
d) HHH
2) Dilution:
a) We have 15% ethanol. We need to make 100 mL of 5% ethanol.

Conc. \rightarrow Diluted
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
$15 \% \times V_{1}=5 \% \times 100 \mathrm{~mL}$
$0.15 \mathrm{~V}_{1}=0.05 \times 100$
$\mathrm{V}_{1}=33.33 \mathrm{~mL}$
Take 33.33 mL of 20% ethanol and add water up to 100 mL .
b) A physician orders 12 mL of a $20 \mu \mathrm{~g} / \mathrm{mL}$ dilution of a drug. There is $50 \mu \mathrm{~g} / \mathrm{mL}$ stock medication. How do you make it?
Stock Medication \rightarrow Order drug
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
$50 \mu \mathrm{~g} \times \mathrm{V}_{1}=20 \mu \mathrm{~g} \times 12 \mathrm{~mL}$
$\mathrm{V}_{1}=4.8 \mathrm{~mL}$ of stock medication
Take 4.8 mL of stock medication and add 7.2 mL DI-water.
Note:
In regard to red blood cell, $0.9 \% \mathrm{NaCl}$ and 5% glucose are both isotonic solutions.

