Result of Standard chromatogram by Instructor				
Compound	Retention time (min)	Peak Area (µs ×min)	Conc. (ppm)	
Fluoride	2.75	0.976	4.88	
Chloride	3.70	3.836	20.0	
Nitrate	5.72	3.858	40.0	
Sulfate	6.72	5.207	40.0	

Chromatogram of my Solution A (IC # 1)				
Compound	Retention time (min)	Peak Area (µs ×min)		
Unknown	5.80	3.427		
Compare to Standard compounds retention time: my Unknown is : NO3 ⁻ (as an example)				

Estimated concentration of unknown:

$$\frac{A_{unk}}{A_{known}} = \frac{C_{unk}}{C_{known}}$$
$$\frac{3.427}{3.858} = \frac{C_{unk}}{40.0}$$
$$C_{unk} = 35.5 \text{ ppm}$$

Note: Do same calculation for the concentration of [F-] in your home's tap water.

Make two lower and higher standard solutions (use volumetric flask & pipet):

[50% of conc. Of unknown]:

35.5 ppm × 0.5 = 17.75 ppm

Convert Stock Solution [NaNO₃] ppm, to [NO₃⁻] ppm

$$[NO_{3}^{-}] = \frac{MW_{NO3^{-}}}{MW_{NaNO3}} \times [NaNO_{3}]_{ppm}$$
$$[NO_{3}^{-}] = \frac{62.01}{85.00} \times 2742_{ppm} = 2000.37 \ ppm$$

2000.37 × V = 17.75 ×100

V = 0.8873 mL (use 1.0 mL volumetric pipet)

Re-calculate for the new conc.:

2000.37 ×1.0 = C × 100

C = 20.0037 ppm

[150% of conc. Of unknown]:

35.5 ppm × 1.50 = 53.25 ppm

CH31

Stock solution [NaNO₃] = 2000 ppm

2000.37 × V = 53.25 ×100

V = 2.6620 mL (use 3.0 mL volumetric pipet)

Re-calculate for the new conc.:

 $2000.37 \times 3.0 = C \times 100$

C = 60.0111 ppm

Quantitative Analysis: Running Solutions A , STD 1 and STD 2				
Solution	Conc. (ppm)	Peak Area (µs ×min)		
А	?	3.580		
STD1	20.0037	1.824		
STD2	60.0111	5.539		
Instructor STD	40.00	3.858		

Plot peak area (STD1, STD2 and Instructor STD) verses concentration of nitrate ion:

Use the line equation from your graph:

P_{area}= 0.0929 C - 0.0256

Use the peak area of the solution A from the quantitative chromatogram:

3.580 = 0.0929 C - 0.0256

C = 38.8116 ppm

Calculate the concentration of your original unknown by using the dilution factor:

 $DF = \frac{100 \, mL \, (flask)}{10 \, mL \, (pipet)} = 10$

 $38.8116 \times 10 = 388.116 \approx 388$ ppm NO₃ ion