CSUS – CH 1E Mass & Weight density Instructor: J.T.

Mass density (ρ):

It is defined as the mass of unit volume of an object or substance.

$$\rho = \frac{M}{V}$$
 Typical Unit: ${}^g/_{cm^3}$, ${}^{Kg}/_{m^3}$

Weight density (D):

It is defined as the weight of unit volume of an object or substance.

$$D = \frac{W}{V} \label{eq:defD}$$
 Typical Unit: $^{N}/_{m^{3}}$, $^{gf}/_{cm^{3}}$

Since: W = M. g Therefore: $D = \rho \cdot g$

Where:

"g" the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth is: $q = 9.8 \text{ m/s}^2$

Example 1: The mass density of steel is 7.8 gr/cm³. A solid chunk of steel has a volume of 141cm³. Determine (a) its mass in grams and (b) its weight density in N/m³.

Solution:

(a) Since $\rho = M/V$; $M = \rho V$; $M = (7.8 \text{gr/cm}^3) (141 \text{cm}^3)$; M = 1100 gr.

Before going to Part (b), let's first convert (gr/cm³) to **SI** that means (kg/m³). Use horizontal fraction bars.

 $7.8 \text{gr/cm}^3 = 7.8 (0.001 \text{kg}) / (0.01 \text{m})^3 = 7800 \text{ kg/m}^3$.

1 kg is equal to 1000gr. This means that 1gr is 0.001kg as is used above.

Also, 1m is **100cm.** This means that **1cm is 0.01m.** Cubing each, results in: $1 \text{cm}^3 = 0.000001 \text{m}^3$ as is used above. Now, let's solve Part (b).

(b) $D = \rho g$; $D = [7800 \text{ kg/m}^3] [9.8 \text{ m/s}^2] = 76000 \text{ N/m}^3$.

Not only you should write Part (b) with horizontal fraction bars, but also check the correctness of the units as well.

Source: http://www.pstcc.edu/nbs/WebPhysics/