Large-sample Tests of Hypotheses Chapter 9 1 ## Purpose of Hypothesis Testing In the last chapter, we studied methods of estimating a parameter (μ , p or p_1 - p_2) based on sample data: - point estimation - confidence intervals In contrast, the goal of hypothesis testing is to make a <u>decision</u> about the *value of a population* parameter based on *sample data* ## **Hypothesis Testing Applications** - A sociologist wants to determine if the mean number of children in an American family is still 2.5 - A buyer wants to decide if the proportion of defective bolts in a shipment exceeds 3% (the manufacturer's specification). - The California Dept of Conservation needs to decide if the mean weight of a recycled aluminum can has decreased from 0.034 lb - Why? You pay in CRV based on the number of aluminum cans you buy. When you recycle your cans the CRV is paid out based on weight. Thus, count = total weight/averge weight of one can - To save money, aluminum can manufacturers are constantly trying to make the cans lighter 3 ## The Logic of Hypothesis Testing How do we use the sample data to make these types of decisions? - First, the research question is phrased as a decision about the value of a population parameter. Formally, this is done by choosing a <u>null hypothesis</u>, denoted H₀, and an <u>alternative hypothesis</u>, H_a. - Next, we determine whether the sample data provide "evidence" against the null hypothesis. Example: Is the mean number of children per family still 2.5 or has it changed? H_0 : μ = 2.5 H_a : µ ≠ 2.5 Suppose we collect data for n=100 families and $\overline{x}=2.3$ with s = 0.50. We need to decide if this is evidence against H₀: μ = 2.5. Recall that some sample-to-sample variation in xbar is typical and expected. # Formulating the Null and Alternative Hypotheses Example: Is the proportion of defective bolts in this shipment more than 3% (the manufacturer's specification)? H_0 : p = 0.03 H_a : p > 0.03 What evidence will we collect from a sample of size n? Example: The California Dept of Conservation needs to decide if the mean weight of a recycled aluminum can has decreased from 0.034 lb H_0 : $\mu = 0.034$ H_a : What evidence will we collect from a sample of n alum cans? Would you consider a sample mean of 0.035 support for the alternative hypothesis (or evidence against the null)? 5 ## Formulating the Null and Alternative Hypotheses - The null and alternative hypothesis must be stated in terms of a population parameter (never a sample statistic) - The null will always contain the equality sign (=). The alternative will contain one of: ≠, > or <. - No overlap between the parameter values specified under H₀ and H_a - The parameter value(s) specified under H₀ typically represents the "status quo" or currently accepted belief. H_a represents the "new" finding the researcher wishes to establish - Current "wisdom" is taken as H₀; departures from it are taken as H_a - Normal human body temp is 98.6 deg F so H_0 : μ =98.6 - Mean IQ is 100 so H₀: - Generally, new drugs, teaching methods, and procedures must be <u>proven</u> to work so the hypothesis corresponding to the new procedure is "better" will be H_a - Drug A increases IQ gives H₀: ______ and H_a: _____ ## Trial by Jury Analogy The logic behind hypothesis testing is similar to a trial by jury where the defendant is "assumed innocent until proven guilty." H₀: the defendant is innocentH_a: the defendant is guilty - The prosecutor must convince the jury that the defendant is guilty "beyond a reasonable doubt" in order to obtain a conviction. - A preponderance of evidence is required to obtain a conviction because we don't want declare an innocent person guilty. - In the language of hypothesis testing, we don't want to make the mistake of rejecting a true null hypothesis. So we must have a lot of evidence (from the sample data) against H₀ in order to reject it. 7 ## Trial by Jury Analogy Example: Is the mean number of children per family still 2.5 or has it changed? H_0 : $\mu = 2.5$ H_a : $\mu \neq 2.5$ - The evidence is our sample mean. This evidence should be compelling against H₀ before we are willing to reject H₀. - Is $\bar{x} = 2.3$ compelling evidence against H₀? We consider whether $\bar{x} = 2.3$ is likely or unlikely under H₀. We will define a <u>rejection region</u> which defines values of \bar{x} that are unlikely under H₀ #### Rejection Region for Example To determine the rejection region, we consider the distribution of xbar for n=100, $\underline{\text{ASSUMING H}}_{\underline{0}}.\underline{\text{IS TRUE}}$ Since n is large, xbar : •Is approximately normally distributed •has mean = μ_0 (generic notation for the mean specified under H_0 . Here, μ_0 is 2.5. •has standard deviation ≈ s/sqrt(n) =0.5/sqrt(100) = 0.05 If H_0 is true, about 95% of the xbars will fall within 2 standard deviations of μ_0 or in the interval 2.5 ±2(0.05)= (2.40, 2.60). The unlikely values of xbar are outside this interval, beneath the gray shaded sections of the graph. Thus, the rejection region is (- ∞ -2.40) and (2.60, ∞). Since xbar = 2.3 is below 2.40, we reject H_0 . Would we reject H_0 if xbar is 2.53? 2.64? 9 ## Alternate Rejection Region for Example Alternately, we can standardize xbar, again <u>assuming H_0 is true</u>. Then compare it to the standard normal distribution to determine if it is unlikely under H_0 . Under the Empirical Rule, any z-score below -2 and above 2 is "unusual." $$\frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{2.3 - 2.5}{0.5 / \sqrt{100}}$$ $$= -4.00$$ So the standardized xbar is unusual under H_0 . Note that it falls in the gray rejection region of the left tail. We reject H_0 . Would we reject ${\rm H_0}$ if the standardized test statistic was -0.97? 5.55? ## Five Steps in a Hypothesis Test All hypothesis tests share a common format: - State the null hypothesis (statement about the value of a relevant parameter) - State the alternative hypothesis - Calculate the test statistic (the evidence from the sample data) - Determine the Rejection Region - State the conclusion in non-technical language 11 ### Summarize the Steps for the Example - 1. H_0 : $\mu = 2.5$ - 2. H_a : $\mu \neq 2.5$ - 3. Test statistic: $$\frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{2.3 - 2.5}{0.5 / \sqrt{100}} = -4.00$$ - 4. Reject H_0 if the standardized test statistics is below z = -2.00 or above z = 2.00. Since -4.00 < -2.00, we reject H_0 - 5. There is sufficient evidence to conclude that the population mean number of children in a family is no longer 2.5. ## All 5 Steps for Another Example Are aluminum cans <u>decreasing</u> in weight? Currently, they are assumed to have mean weight 0.034 lb. A random sample of 64 cans has sample mean weight 0.033 lb with standard deviation 0.008 lb. - 1. H_0 : $\mu = 0.034 \text{ lb}$ - 2. H_a : μ < 0.034 lb - Sketch the distribution of xbar under H₀. Use it to calculate the standardized test statistic (z-score). - 4. Reject H_0 if the standardized test statistics is below z = -2.00 or above z = 2.00. What is our decision?_____ - 5. Conclusion: 13 ## **Types of Errors** Since we are basing our conclusion on sample data, we can make an error in our conclusion. | | H ₀ is true | H _a is true | |-------------------------|------------------------|------------------------| | Reject H ₀ | Type I Error | Correct | | "Accept" H ₀ | Correct | Type II Error | - $\alpha = Pr(Type \mid Error) = Pr(Reject \mid H_0 \mid when \mid H_0 \mid s \mid true)$ - $\beta = Pr(Type \ II \ Error) = Pr(Accept \ H_0, \ when \ H_0 \ is \ false)$ - However, we can control the probabilities of these errors. - The only way to have $\alpha = 0$ and $\beta = 0$ is to sample the entire population. #### **Level of Significance** α is also called the $\underline{\text{level of significance}}$ (l.o.s) of the hypothesis test We can calculate α for the mean number of children in a family example The distribution of xbar for samples of size 100 is shown again. Recall this distribution assumes the population mean is 2.5 (as specified under H₀). The values under the gray sections are the rejection region. If the pop mean is really 2.5, is it possible to get an xbar in the rejection region? ___. In fact, it will happen about of the time. In other words, if H_0 is true, we will incorrectly reject H_0 5% of the time (over many repetitions of the hyp test). Since the l.o.s. is the probability of rejecting a true H₀, the l.o.s. is 0.05. How can we decrease a, the l.o.s.? Increase α ? 15 ## Choosing the Rejection Region It is standard to choose α first, $\textit{then}\xspace$ choose a rejection region so that the probability of rejecting a true H_0 is α . Let's revisit the mean number of children per family example and choose a rejection region to obtain α =0.10: - H_0 : $\mu = 2.5$ 1. - H_a : $\mu ≠ 2.5$ 2. 2. $$\Pi_a$$: $\mu \neq 2.5$ 3. Test statistic: $z^* = \frac{\overline{x} - \mu_0}{s / n} = \frac{2.3 - 2.5}{0.5 / \sqrt{100}} = 4.00$ We wish to reject H_0 for the 0.10=10% most unusual values of z^* (under H_0) that support H_a . Here, support for H_a will occur if the z^* is <u>too small or too large</u>. (two-tailed test). We reject H_0 if z^* is among the $\alpha/2=0.10/2=0.05=5\%$ highest or the 5% lowest z*'s expected under H₀. (as shown in the graph on the next slide) #### **Rejection Region** If the null hypothesis true, z*, the standardized test stat will be distributed as shown in the graph. It will be "too high" or "too low" as judged by the shaded rejection regions 0.10 or 10% of the time (assuming the null is true). Thus, this rejection region will cause us to reject a true null hypothesis 10% of the time, and we attain the desired 0.10 probability of Type I error. 17 # Rejection Regions for one-tailed Hypotheses H₀: $μ=μ_0$ vs. Ha: $μ>μ_0$ We use a rejection region having right-tail area α $H_0\colon \ \mu = \mu_0$ vs. Ha: $\mu < \mu_0$ We use a rejection region having left-tail area α ## Calculate the Rejection Region Assuming a standardized test statistic (z), determine the rejection region • H_0 : $\mu = 100$ vs. Ha: $\mu > 100$, $\alpha = 0.01$ What do you decide if $z^*=2.58$? $z^*=-2.58$? - H_0 : $\mu = 100$ vs. Ha: $\mu \neq 100$, $\alpha = 0.01$ - H_0 : $\mu = 100$ vs. Ha: $\mu > 100$, $\alpha = 0.01$ 19 # Example: Hypothesis test at l.o.s. α (one-tailed) Test if Drug A increases IQ at 0.05 l.o.s. A sample of 64 subjects on Drug A have sample mean IQ 105 and standard deviation 16. - 1. H_0 : $\mu = 100$ - 2. H_a : $\mu > 100$ - Calculate standardized test statistic: - 4. Determine rejection region (depends on Ha and α). We will reject H0 if z* is ______. - 5. Conclusion: _____ # Example: Hypothesis test at l.o.s. α (two-tailed) At Degrees-R-Us University, the true mean cost of a student's textbooks last semester was \$503. A random sample of 60 students this semester have average textbook cost of \$558 with standard deviation \$70. At the 0.05 l.o.s., conduct a hypothesis test to determine if the true mean textbook cost has changed from last semester. - 1. H_0 : $\mu = 503$ - 2. H_a : $\mu \neq 503$ - Calculate standardized test statistic: - 4. Determine rejection region (depends on Ha and α). We will reject H0 if z^* is - 5. Conclusion: _____ 2 ## What about Type II Error? - Trade-off between α and β . For a fixed sample size, the smaller you make α , the larger β becomes and vice versa. - Usually, sample size fixed due to amount of funding and α is fixed at 0.05 (or some other common value). Then, β is taken to be whatever these other two constraints dictate. - Problem with the above approach: - Sometimes however, it's the best we can do. ## Exercise in Interpreting α and β Non-statistical hypothesis test: You are on the road and notice your gas gauge nearing empty as you pass a gas station, the next gas station is 25 miles ahead. H₀: I don't have enough gas to make it to the next gas station H_a : I do have enough gas to make the next station What are the Type I and II errors and the consequences of each? Do you prefer α = 0.01 and β =0.05 or α =0.05 and β =0.01? 23 ## Type I and Type II error for a Stat hypothesis test Recall Example: Test if Drug A increases IQ at 0.05 l.o.s. A sample of 64 subjects on Drug A have sample mean IQ 105 and standard deviation 16. - 1. H_0 : $\mu = 100$ (drug doesn't work) - 2. H_a : $\mu > 100$ (drug does work) - Type I Error: reject H₀ when H₀ is true. Specifically, - Type II Error: accept H₀ when H₀ is false. Specifically, | What is the probability Type I error?_ | | |--|--| | Type II error? | | ### P-values - Problem with reporting study results using the level of significance approach: - Consequently, pretty much every study reported in a professional journal will report the p-value - The p-value allows the reader to decide if the study results present enough of a contradiction to H₀, (thus, "support" of H_a), based on his/her personal favorite l.o.s. - The p-value is the probability of obtaining a test statistic as extreme or more extreme than what was observed -assuming H₀ is true. - $-\,$ "Extreme" means values in the direction (too high or too low or both) that would support $\rm H_{\rm a}.$ 25 ### Calculate p-values for one-tail test Recall Example: Test if Drug A increases IQ at 0.05 l.o.s. A sample of 64 subjects on Drug A have sample mean IQ 105 and standard deviation 16. - 1. H_0 : $\mu = 100$ (drug doesn't work) - 2. H_a : $\mu > 100$ (drug does work) - 3. Test statistic: $z^* = \frac{\overline{x} \mu}{\sqrt[8]{\sqrt{n}}} = \frac{105 100}{\sqrt[16]{64}} = 2.50$ - 4. P-value = $Pr(z^*>2.50)=1-0.9938=0.0062$ (Draw a picture here) - 5. Thus, if the drug doesn't work and the true mean IQ is still 100 with the drug, the probability of seeing a sample mean as large or larger than we observed is 0.0062 (not likely!). We reject the null. There is sufficient evidence that the true mean IQ increases with the drug. **Small** p-values call for rejection of H_0 . If p-value ____ α , we reject H_0 . ### P-value for a two-tailed test - 1. H_0 : $\mu = 100$ - 2. H_a : $\mu \neq 100$ - 3. Test statistic: $z^* = \frac{\bar{x} \mu}{s / \sqrt{n}} = \frac{105 100}{16 / \sqrt{64}} = 2.50$ - 4. P-value = $Pr(z^*>2.50)+Pr(z^*<-2.50)=2^*(1-0.9938)=2(0.0062)=0.0124$ - 5. Conclusion: There is sufficient evidence to conclude the _____ mean differs from 100. 2 ### Is there scientific evidence for ESP? - Ganzfeld study - One of four different pictures is randomly chosen as the target - "sender" sees the picture and tries to send the image to the receiver (in another room) - The receiver then sees the 4 pictures and attempts to identify the target picture - If the receiver does *not* have ESP, what is the probability he/she will guess the target picture? - Data from many subjects over many ganzfeld experiments yielded 122 "hits" out of 355 trials (Utts, 1991). The sample proportion is _____ = 34%, instead of 25% which would be expected in the absence of ESP. Are these data sufficient to conclude that ESP exists? ### Does ESP Exist? - 1. H_0 : $p = ____ (no ESP)$ - 2. H_a : $p > ____ (ESP)$ - 3. Test statistic: $$z^* = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.34 - 0.25}{\sqrt{\frac{0.25(1 - 0.25)}{355}}} = 3.92$$ - 4. P-value = Pr(z*>3.92)=0.000044. Decision____ - 5. Conclusion: 29 ## What if the sample size is small? All our inferential procedures for μ (confidence intervals and hypothesis tests) assume *a large sample size*. If the sample size is small, • the CI becomes: $$\overline{x} \pm t_{n-1,\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$$ - For Hypothesis test: the rejection region comes from the tails of the Tdistribution with n-1 degrees of freedom (everything else is the same) - T-distribution is actually a family of distributions. Specifying the degrees of freedom as 1,2,3,... indicates which T-distn you refer to (picture here) - T-distn looks like the normal only with fatter tails - Table 4 gives probabilities for T-distn