ex3 MO supplement

Diagram 9-1

The molecular orbital diagram below may be used for the following problem(s). For oxygen and fluorine, the σ_{2p} orbital should be lower in energy than the π_{2p} . However, the diagram will still yield correct bond order and magnetic behavior for these molecules.

- 1. Refer to Diagram 9-1. According to molecular orbital theory, which of the following species is the most likely to exist (i.e., which will have the greatest bond order)?
 - a. H_2^{2+}
- b. F_2^{2-}
- C. N_2^{2-}
- d. Be₂
- e. O_2^{2+}
- 2. Refer to Diagram 9-1. According to molecular orbital theory, which of the following species is least likely to exist (i.e., has the lowest bond order)?
 - a. H_2^{2-}
- b. F_2^{2+}
- C. C_2^{2-}
- d. O_2^{2+}
- e. B_2^{2-}
- 3. Refer to Diagram 9-1. According to molecular orbital theory, which of the following species has the highest bond order?
 - a. F₂
- b. F_2^{2+}
- C. C_2^{2-}
- d. Li₂
- e. B_2^{2+}
- 4. Refer to Diagram 9-1. According to molecular orbital theory, what is the bond order of oxygen, N_2^{2-} ?
 - a. 1
- b. 3/2
- c. 2
- d. 5/2
- e. 3
- 5. Refer to Diagram 9-1. According to molecular orbital theory, what is the bond order of O_2^+ ?
 - a. 1
- b. 3/2
- c. 2
- d. 5/2
- e. 3

	Refer to Diagram 9-1. According to molecular orbital theory, which of the following lists ranks the fluorine species in terms of increasing bond order? a. $F_2^{2+} < F_2^{2-} < F_2$ b. $F_2^{2-} < F_2 < F_2^{2+}$ c. $F_2 < F_2^{2+} < F_2^{2-}$ d. $F_2 < F_2^{2-} < F_2^{2+}$ e. $F_2^{2+} < F_2 < F_2^{2-}$ Refer to Diagram 9-1. Consider the molecules B_2 , C_2 , N_2 and F_2 . Which two molecules have the same bond
	order? a. B_2 and C_2 b. B_2 and F_2 c. C_2 and N_2 d. C_2 and C_2 e. C_2 and C_2
8.	Refer to Diagram 9-1. Use molecular orbital theory to predict which species is paramagnetic.
	a. N_2 b. B_2 c. F_2 d. Li_2 e. H_2
9.	Refer to Diagram 9-1. Use molecular orbital theory to predict which ion is paramagnetic. a. F_2^{2+} b. O_2^{2-} c. O_2^{2+} d. N_2^{2+} e. B_2^{2-}
10.	Refer to Diagram 9-1. What is the molecular orbital configuration of F_2 ? a. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2p})^2$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^2$ b. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^2$ c. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma^*_{2p})^4$ $(\sigma^*_{2p})^4$ d. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma^*_{2p})^4$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^4$ e. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma^*_{2p})^4$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^4$
11.	Refer to Diagram 9-1. What is the molecular orbital configuration of N_2^{2+} ? a. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^4$ $(\sigma_{2p})^2$ $(\pi^*_{2p})^2$ b. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^4$ c. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^2$ $(\sigma_{2p})^2$ d. [core electrons] $(\sigma_{2s})^4$ $(\sigma^*_{2s})^4$ e. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^4$ $(\sigma_{2p})^2$ $(\pi^*_{2p})^4$
12.	Refer to Diagram 9-1. Assume that the molecular orbital energy diagram for a homonuclear diatomic molecule applies to a heteronuclear diatomic molecule. What is the molecular orbital configuration of CO? a. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^4 (\sigma_{2p})^2$ b. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^2 (\sigma_{2p})^2 (\pi^*_{2p})^2$ c. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^2 (\sigma_{2p})^4$ d. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^3 (\sigma_{2p})^3$ e. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^3 (\sigma_{2p})^3$
13.	Refer to Diagram 9-1. Assuming that the molecular orbital energy diagram for a homonuclear diatomic molecule applies to a heteronuclear diatomic molecule, determine which of the following species has the highest bond order. a. NO^- b. OF^- c. C_2 d. O_2^{2-} e. NO^+

14. Refer to Diagram 9-1. Assuming that the molecular orbital energy diagram for a homonuclear diatomic molecule applies to a heteronuclear diatomic molecule, determine which of the following species is paramagnetic.

a. NO+

b. CO

c. CN-

d. OF-

e. NO

ex3 MO supplement

Answer Section

- 1. E
- 2. A
- 3. C
- 4. C
- 5. D
- 6. B
- 7. B
- 8. B
- 9. A
- 10. E
- 11. B
- 12. A
- 13. E
- 14. E