ex3 MO supplement ## Diagram 9-1 The molecular orbital diagram below may be used for the following problem(s). For oxygen and fluorine, the σ_{2p} orbital should be lower in energy than the π_{2p} . However, the diagram will still yield correct bond order and magnetic behavior for these molecules. - 1. Refer to Diagram 9-1. According to molecular orbital theory, which of the following species is the most likely to exist (i.e., which will have the greatest bond order)? - a. H_2^{2+} - b. F_2^{2-} - C. N_2^{2-} - d. Be₂ - e. O_2^{2+} - 2. Refer to Diagram 9-1. According to molecular orbital theory, which of the following species is least likely to exist (i.e., has the lowest bond order)? - a. H_2^{2-} - b. F_2^{2+} - C. C_2^{2-} - d. O_2^{2+} - e. B_2^{2-} - 3. Refer to Diagram 9-1. According to molecular orbital theory, which of the following species has the highest bond order? - a. F₂ - b. F_2^{2+} - C. C_2^{2-} - d. Li₂ - e. B_2^{2+} - 4. Refer to Diagram 9-1. According to molecular orbital theory, what is the bond order of oxygen, N_2^{2-} ? - a. 1 - b. 3/2 - c. 2 - d. 5/2 - e. 3 - 5. Refer to Diagram 9-1. According to molecular orbital theory, what is the bond order of O_2^+ ? - a. 1 - b. 3/2 - c. 2 - d. 5/2 - e. 3 | | Refer to Diagram 9-1. According to molecular orbital theory, which of the following lists ranks the fluorine species in terms of increasing bond order? a. $F_2^{2+} < F_2^{2-} < F_2$ b. $F_2^{2-} < F_2 < F_2^{2+}$ c. $F_2 < F_2^{2+} < F_2^{2-}$ d. $F_2 < F_2^{2-} < F_2^{2+}$ e. $F_2^{2+} < F_2 < F_2^{2-}$ Refer to Diagram 9-1. Consider the molecules B_2 , C_2 , N_2 and F_2 . Which two molecules have the same bond | |-----|--| | | order? a. B_2 and C_2 b. B_2 and F_2 c. C_2 and N_2 d. C_2 and C_2 e. C_2 and C_2 | | 8. | Refer to Diagram 9-1. Use molecular orbital theory to predict which species is paramagnetic. | | | a. N_2 b. B_2 c. F_2 d. Li_2 e. H_2 | | 9. | Refer to Diagram 9-1. Use molecular orbital theory to predict which ion is paramagnetic. a. F_2^{2+} b. O_2^{2-} c. O_2^{2+} d. N_2^{2+} e. B_2^{2-} | | 10. | Refer to Diagram 9-1. What is the molecular orbital configuration of F_2 ? a. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2p})^2$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^2$ b. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^2$ c. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma^*_{2p})^4$ $(\sigma^*_{2p})^4$ d. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma^*_{2p})^4$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^4$ e. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\sigma^*_{2p})^4$ $(\sigma_{2p})^2$ $(\sigma^*_{2p})^4$ | | 11. | Refer to Diagram 9-1. What is the molecular orbital configuration of N_2^{2+} ? a. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^4$ $(\sigma_{2p})^2$ $(\pi^*_{2p})^2$ b. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^4$ c. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^2$ $(\sigma_{2p})^2$ d. [core electrons] $(\sigma_{2s})^4$ $(\sigma^*_{2s})^4$ e. [core electrons] $(\sigma_{2s})^2$ $(\sigma^*_{2s})^2$ $(\pi_{2p})^4$ $(\sigma_{2p})^2$ $(\pi^*_{2p})^4$ | | 12. | Refer to Diagram 9-1. Assume that the molecular orbital energy diagram for a homonuclear diatomic molecule applies to a heteronuclear diatomic molecule. What is the molecular orbital configuration of CO?
a. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^4 (\sigma_{2p})^2$
b. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^2 (\sigma_{2p})^2 (\pi^*_{2p})^2$
c. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^2 (\sigma_{2p})^4$
d. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^3 (\sigma_{2p})^3$
e. [core electrons] $(\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p})^3 (\sigma_{2p})^3$ | | 13. | Refer to Diagram 9-1. Assuming that the molecular orbital energy diagram for a homonuclear diatomic molecule applies to a heteronuclear diatomic molecule, determine which of the following species has the highest bond order.
a. NO^- b. OF^- c. C_2 d. O_2^{2-} e. NO^+ | 14. Refer to Diagram 9-1. Assuming that the molecular orbital energy diagram for a homonuclear diatomic molecule applies to a heteronuclear diatomic molecule, determine which of the following species is paramagnetic. a. NO+ b. CO c. CN- d. OF- e. NO ## ex3 MO supplement ## **Answer Section** - 1. E - 2. A - 3. C - 4. C - 5. D - 6. B - 7. B - 8. B - 9. A - 10. E - 11. B - 12. A - 13. E - 14. E