Bio 127 - Section Il

Early Development and Cell Fate
Determination

I. Fertilization and Cleavage
Il. Specification and Gastrulation

lll. Organizing Power and Axis Formation

A. Some Really Big Ideas....

1. Species Specificity Must be Maintained
2. A Single Sperm is all You Need (or Want)
3. Genetic Fusion Signals Major Changes

4. The Egg is Built for Early Development

B. The Structures of the Gametes

» The sperm is built for species identification
and high speed DNA delivery

» The egg is built to receive only one sperm
and to store everything needed to get
started down the path to development
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Figure 4.5 Stages of egg maturation at the time of sperm entry in different animal species
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Second metaphase Meiosis complete
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Mot manruls Sea urchina

Fish

We’re haploid with two
copies at fertilization,
sea urchins are haploid
with a single copy.

We extrude two more
polar bodies afterward.
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Remember, the egg is complexly organized....

e The sea urchin egg is 10,000 times the
volume of the sperm (ostrich eggs — wow!)
— Nutrition
— mRNA
— Transcription factors
— Ribosomes and tRNA
— Secretable paracrine factors
— Protection: DNA repair, distaste, antibodies

Structures at the plasma membrane

vitellin envelope
cell membrane

Cell membrane

Microvilli

Vitelline -
envelope

Cortical —=
granule

Cortical granule also has digestive enzymes,
as well as sugars and proteins needed to block
polyspermy and support cleavage blastomeres.
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C. External Fertilization is Better Understood

¢ Even today much of what we truly
understand about fertilization has come
from the study or organisms who fertilize
their eggs outside of the female’s body

¢ Understanding internal fertilization is big-
money big-science




The 8 Big Ideas of Sea Urchin Fertilization

. Chemoattraction

. The Acrosome reaction

. Sperm Recognition of Egg ECM
. Membrane Fusion

. Block to Polyspermy

. Cortical Granule Reaction

. Activation of Egg Metabolism

. Fusion of Genetic Material
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Secretion of the contents of the acrosome is species-specific

Very important in an
aqueous environment
with mixed sperm.
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Figure 4.12 Acrosome reaction in sea urchin sperm

The acrosome reaction release digestive enymes to get through the jelly layer
and inverts Bindin proteins on the acrosomal membrane onto surface of process.
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Bindin proteins on the sperm bind to receptors on egg plasma membrane
and facilitate membrane fusion and in turn stimulate egg fertilization cone.
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« Bindin proteins and bindin receptors are
mutational “hotspots”

— They are rapidly changing DNA sequences
— Very close species have different proteins

Figure 4.16 Scanning electron micrographs of the entry of sperm into sea urchin eggs
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* Sperm entry provides:
— The male haploid DNA contribution
— A single centriole

» The male centriole divides to form both
pieces of the first mitotic spindle
— The female centriole is degraded

Polyspermy kills the embryo

There is no
mechanism
to ensure
each cell
getssame#
chromosomes
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Block to Polyspermy

* There are two mechanisms in sea urchins

— The Fast Block

« Rapid change in membrane potential: Na+
channels open on membrane fusion, blocks bindin

« Occurs in inverts and frogs, not mammals

— The Slow Block
« A wave of Ca2+ channel openings sweeps from
sperm entry site around egg to opposite side

« Causes release of the cortical granules and
formation of the fertilization envelope

« Occurs in many animals, including mammals




Figure 4.21 Wave of Ca?* release across a sea urchin egg during fertilization
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Figure 4.19 Formation of the fertilization envelope and removal of excess sperm
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« Key changes:

— Enzymes degrade bindin and bindin receptors
— Sugars attract water and push vitelline
envelope away from plasma membrane

— Tough protein cross-linking and hyalin layer
give support to cleavage blastomeres




Activation of egg metabolism occurs in the cytosol, independent of the pronuclei

(A) ACTIVATION AFTER GAMETE
MEMBRANE FUSION

Soluble factors
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activate PLC
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(B) ACTIVATION PRIOR TO
GAMETE FUSION
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Figure 4.26 Postulated pathway of egg activation in the sea urchin (Part 2)
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Approximate lime
Event postinsemination®
EARLY RESPONSES
Sperm-egg binding 0 seconds
Fertilization potential rise (fast block to polyspermy) within 1 sec
Sperm-egg membrane fusion within 1 sec
Calcium increase first detected 10 sec
Cortical granule exocytosis (slow block to polyspermy) 15-60 sec

Main sources: Whitaker and Steinhardt 1985; Mohri et al. 1995,

“Approximate times based on data from S, purpuratus (15-17°C), L. pictus (16-18°C), A, punctu-
lata (18-20°C), and L. variegatus (22-24°C). The timing of events within the first minute is best
known for Lytechinus variegatus, so times are listed for that species,
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TABLE 4.1 Events of sea urchin fertilization (Part 2)

starts at 1 min

Increase in NADF* and NADPH starts at 1 min
Increass in O, consumption starts at 1 min
Sporm entry 1-2 min

Acid efflux 1-5 min

Increase in pH (remains high) 1=5 min

Sperm chromatin decondensation 2-12 min

Sperm nucleus migration to egy center 2-12 min

Egg nucleus migration to sperm nucleus 5-10 min
Activation of protein synthesis starts at 5-10 min
Activation of amino acid fransport starts at 5-ii min
Initiation of DNA synthesis 2040 min
Mitosis 60-80 min

First cleavage 85-95 min

pictus (16-18°C), A. monchulata
the first minute is best known for

Fusion of the Genetic Material in Sea Urchins

« Sperm carries its nucleus, centriole,
mitochondria and flagellum into egg
— Mito’s and flagellum disintegrate in cytosol
— Interestingly, in mice, centriole also degrades

» DNA decondenses to form pronucleus
— First the membrane breaks up, exposing DNA
— Then sperm’s histones are replaced by egg’s
— This loosens up nucleosomes for replication

Fusion of the Genetic Material in Sea Urchins

» Male pronucleus then aligns with its
centriole between it and female pronucleus

» The centriole sends out microtubes that
integrate with egg’s to form an aster
between the two pronuclei

» The pronuclei are then pulled together to
allow fusion and formation of the diploid
zygote nucleus




D. What We Know of Internal Fertilization

» Tough to study

— Fertilization occurs in the female oviducts
« We don't yet know all conditions sperm encounter

— Sperm is ejaculated at nearly every
developmental stage
« Of 280 million, 200 reach the egg

* We don't yet know why the winners are the
winners

The Female Reproductive Tract Aids Transport and Maturity of Gametes

» The ampulla is the region of oviduct where

fertilization takes place

— Uterine contractions help get sperm there

— There is a holding region just before ampulla

— Sperm flagella are stimulated near egg

— Directional cues coming from egg or
cummulus

— Along the migration route sperm are
stimulated to mature “Capacitation”

Figure 4.29 Hypothetical model for mammalian sperm capacitation
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Figure 4.30 SEM (artificially colored) showing bull sperm as it adheres to the membranes of

epithelial cells in the oviduct of a cow prior to entering the ampulla

This takes time.
The really
speedy sperm
get there too
soon.
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Key Molecular Events of Capacitation

1. Sperm cell membrane loses cholesterol which
localizes proteins for binding egg

2. Protein and carbohydrate “caps” on binding
proteins are removed

3. Leakage of K+ cause shift in membrane
potential activating Ca+ channels

4. Intracellular proteins are activated by
phosphorylation following signal from oviduct

5. The acrosomal membrane is changed to
prepare for fusion

« Capacitation is accompanied by directional
CUES....

— Thermotaxis: sperm can sense 2°C gradient

— Chemotaxis: sperm follow progesterone




Figure 4.8 Sumnm of events leading to the fusion of egg and sperm cell membranes in the sea
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Figure 4.35 Pronuclear movements during human fertilization
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Il. Cleavage

A. Background Information

B. Invertebrates

Sea Urchins

Snails

Tunicates

C. Elegans

Drosophila melanogaster

a b wn e

C. Vertebrates
1. The Frog
2. Zebrafish
3. The Chick Embryo
4. Mammals

A. Background Information

. The Model Organisms

. Structure-Process-Structure
. Rapid Mitotic Cell Divisions
. Cleavage Patterns

. Mid-Blastula Transition

a b~ WOWDN B




1. The Model Organisms

Echinoderms (sea urchins)

o

b. Gastropod molluscs (shails)

c. Tunicates (ascidians)

d. Nematode worms (C. elegans)
e. Insects (D. melanogaster)

f.  Amphibians (Xenopus laevis)
g. Fish (Danio rerio)

h. Avians (Gallus gallus)

i. Mammals (human and mouse)

Cleavage is a developmental process that
takes the organism from fertilization
through the blastula stage

Structure - Process = Structure

Cleavage is rapid mitotic cell division

The G-phases of somatic mitosis allow for cell growth so that
the daughter cells are equal in size to the parent cell. In blastomeres
we are trying to reduce the volume of the egg to somatic levels.

Syniluesis

Frogs can make 37,000 cells in 43 hours.
Fruit flies can make 50,000 in 12 hours (10 min!)

DEVELOPMENTAL BIOLOGY, 9, Figure 5.1 L —




Figure 5.2 Role of microtubules and microfilaments in cell division
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Karyokinesis = tubulin
Cytokinesis = actin

Mid-Blastula Transition

New mRNAs are transcribed

G-phases added back as cleavage goes on.

- Xenopus adds G1 and G2 back after 12 round
- Drosophila adds G1 at round 14 and G2 at 17

Synchronicity is lost as cells “go own way”

- Different regions of egg produce different cycle controls

- The beginnings of true differentiation
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Figure 5.3 Summary of the main patterns of cleavage
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We'll start with cleavage

DEVELOPMENTAL BIOLOGY, Se, Figure 5.3

[ e—

B. Invertebrates

1. We'll start with the sea urchin....

— Holoblastic: all of the egg forms into cells
— Isolecithal: sparse yolk throughout cytosol

— Animal-Vegetal: a little more yolk in vegetal
end

Figure 5.6 Cleavage in the sea urchin (Part 1)
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¢ C1: meridional and C2: meridional
* C3: equatorial

e C4: animal pole 4 divide meridionally
. vegetal 4 divide unequally equatorial

* C5: animal 8 divide equatorially
. vegetal 4 macros divide meridionally
. vegetal 4 micros divide unequally

¢ C6: animal 16 divide meridionally
. vegetal divide equatorially

e C7:animal 16 divide equatorially
. vegetal divide meridionally

Figure 5.6 Cleavage in the sea urchin (Part 2)

(B)
C4
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Figure 5.7 Micrographs of cleavage in live embryos of the sea urchin Lytechinus variegatus, seen
from the side

Fertilization envelope
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* Proteins secreted from the inner surface of
cells draw water from outside

* Results in hollow blastula

Figure 5.8 Fate map and cell lineage of the sea urchin Strongylocentrotus purpuratus (Part 1)
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Figure 5.8 Fate map and cell lineage of the sea urchin Strongylocentrotus purpuratus
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Micromeres induce presumptive ectodermal cells to acquire other fates
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Radial, Holoblastic Cleavage in the Sea Urchin

(A)

__Animal pole

alternating meridional and equatorial cleavage
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The adult organism has radial symmetry

2. Spiral, Holoblastic Cleavage of the Snail

(A) View from animal pole
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Figure 5.24 Spiral cleavage in molluscs
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Figure 5.25 Looking down on the animal pole of left-coiling (A) and right-coiling (B) snails

{A) I.cifl-_h.mcbcd coiling (B} Ri.ghl-hundﬂ! coiling
Right-hand coiling

is genetically dominant
but it really depends
on mom’s genetics
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Polar lobe formation in certain mollusc embryos
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3. Bilateral, Holoblastic Cleavage in Tunicates

(A) (B)
Ectoderm
Neural —
ectoderm
Notochord
Endoderm  Mesenchyme Anterior  Posterior
Vegetal pale Vegetal pole

Everything from the first
cleavage is focused on the
symmetrical midline

View from vegetal pole
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Figure 5.36 Cytoplasmic segregation in the egg of Boltenia villosa

(A) (B)  Yellow crescent (C)
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Figure 5.35 Cytoplasmic rearrangement in the fertilized egg of Styela partita
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4. The nematode Caenorhabditis elegans

We may know more
about C. elegans than
any other organism:

: - every cell division
= ‘ - every cell death

—" 9 i I - every differentiation

- every migration
wp——== - full genome
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Rotational, Holoblastic Cleavage in the nematode Caenorhabditis elegans
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Figure 5.42 The nematode Caenorhabditis elegans (Part 2)

Cleavage divisions drive rotation:
Some are asymmetrical, producing a
stem cell (P-lineage) and a “founder” o

cell. The descendents of founder cells Qa.
give all of the larval cells (558 cells). ! |

- Embiryos

- \
Anterior Posterior Stem cell divisions are meridional
AB | A,,{ ’ | ApGaT AR
- »ooyq
— e — ~—
Cherion Founder cell divisions are equatorial

An adult hermaphrodite has 959 cells, males have 1031
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5. Superficial cleavage in a Drosophila embryo
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Figure 6.2 Nuclear and cell division in Drosophila
-
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Figure 6.3 Formation of the cellular blastoderm in Drosophila

The actin fibers around the
nulcei later coordinate their
elongation and the formation
of membrane invaginations.
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C. Vertebrates

1. The Frog

2. Zebrafish

3. The Chick
4. Human




al, Holoblastic Cleavag a frog egg

Same basic design as the sea urchin

(A)

It is unequal because of the large amount of yolk in the vegetal end
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Figure 7.3 Scanning electron micrographs of frog egg cleavage
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2. Discoidal, Meroblastic Cleavage in Zebrafish
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Figure 7.40 Discoidal meroblastic cleavage in a zebrafish egg
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Figure 7.41 Fish blastula
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3. Discoidal, Meroblastic Cleavage in a chick egg

(A) (B) (&) (D)

Area Area  Marginal
pellucida opaca  zone

Forming cells Marginal zone
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Figure 8.2 Formation of the chick blastoderm (Part 1)

MIDSAGITTAL VENTRAL I DORSAL
(A) Stage X Arca pellucida Koller's Area opuca
epiblast sickle epiblast
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Figure 8.2 Formation of the chick blastoderm (Part 2)
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4. Mammals: Development of a human embryo from fertilization to implantatio

Lona
pellucida

Early stage of
implantation

DEVELOPMENTAL BIOLOGY, Se, Figura 8.15 D




Rotational, Holoblastic Cleavage in Mammals

(A) Echinoderm and (B) Mammal Same design as
amphibian C. elegans

Cleavage  Cleavage Cleavage  Cleavage

plane I1 plane I planeIIA  plane

e Wi =
| W o
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Figure 8.17 Cleavage of a single mouse embryo in vitro

Figure 8.20 Hatching from the zona and implantation of the mammalian blastocyst in the uterus

Trophoblast
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