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CE 170:  Environmental Engineering

Notes on Gas Transfer Kinetics (Johnston)

Henry's Law describes an equilibrium situation: the rate of gas dissolving into the liquid from the atmosphere (rd) equals the rate at which the gas volatilizes from the liquid (rv).  Under equilibrium, rd = rv and concentrations are constant.  But what if we are not in equilibrium?  Suppose, for instance, a jar of water with only a little oxygen in it is opened to the atmosphere and left on a countertop.  If we were to monitor the concentration of oxygen in the water over time, the results might look like:
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As can be seen, the concentration asymptotically approaches some maximum concentration at which equilibrium conditions are re-established. Because the concentration doesn't go any higher than this value, it has come to be known as the saturation concentration (Cs).  Experiments of this kind have shown that the rate of change of dissolved gas concentration can be expressed mathematically by:
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where

C = the concentration of dissolved gas (mg/L or mole/L)

CS = the concentration of gas under saturated (equilibrium) conditions 

ka = gas transfer coefficient (This takes many other names as well.)

t = time

CS is the concentration predicted by Henry's Law.  Let's see if this equation makes sense.  If C < CS, then dC/dt > 0, and the concentration rises, indicating that the net movement is from the air into the water (rd>rv).  If C > CS, then dC/dt < 0, and the concentration drops, indicating that the net movement is from the water into the air (rd<rv).

If we integrate this equation and apply the appropriate boundary condition (at t=0, C=C0), the resulting equation is:
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(Do you remember how to do this?)

In the environment, C is usually less than CS, so the term (CS-C) is often called the "deficit", D.  Rewriting the integrated equation in terms of the deficit yields:
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Notice that this is an exponential decay function.  Can you see it in the graph of experimental results shown above?  The distance from C to Cs is getting smaller with time.

It is helpful to think of the deficit (or CS-C) as a "driving force" for net gas transfer. Looking at the differential equation dC/dt = ka(CS-C), the slope of the C curve is steepest when C is farthest from CS (i.e., when the deficit is largest).  As C approaches CS, the slope gets smaller and smaller.  In other words, the driving force for net gas transfer diminishes as the system approaches equilibrium.  This is an example of Le Chatelier's Principle which says that when a system's equilibrium is disturbed, it attempts to re-establish that equilibrium.  The larger the disturbance, the "harder" the system "works" to re-establish the equilibrium.

Besides the deficit, what other factors do you think might affect the rate of gas transfer?  Recall our hypothetical experiment.  We left the jar sitting quietly on a countertop and watched the oxygen climb to the saturation value.  What if we mixed the jar?  What if we bubbled air through the jar?  Would the degree of mixing or the size and number of the bubbles affect the results?  Yes they would.  

Physical factors like mixing and bubbles change the gas transfer rate by their effects on the transfer coefficient, ka.  Identifying and measuring the many factors that affect ka is usually so difficult that it is easier to measure ka directly by experiment.  We can do this by linearizing the integrated deficit equation as shown below:

D = D0e-kat
ln(D)  = ln(D0)-kat

This equation is in the form of  y = b+mx where m = ka and b = intercept = ln(D0).
If we run the experiment and graph the results according to the linearized equation, we should get a plot that looks like the following:
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The absolute value of the slope will be ka.  Measuring the ka values for several gas transfer systems is the goal of our lab exercise this week.

After doing the linear regression, the original equation can be written with the best-fit values.  In this case, 

-ka = -0.0301/min

ln(D0) = 1.7272, so D0 = 5.62 mg/L

D = 5.62 exp(-0.0301 t)

When this equation is plotted with the experimental data, the graph on the next page is generated.  Note that the curve from the derived equation fits the data pretty well except for the first value.  
An alternate form of the linearized equation is:
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Mathematically, this is equivalent to the version suggested above.  D0 is Cs-C0, so it doesn’t seem hard to use either.  It does, however, place a heavy burden on the C0 measurement.  Because every other value is divided by this number, if it is a little “off”, the whole regression will be affected.  In the graph below, C0 looks inconsistent with the other values in the series.  To avoid this potential trouble spot, use the intercept from the regression to calculate D0 rather than the concentration at time zero. 

Y = b - mx    (    ln(D)  = ln(D0) - kat
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