EOMCCSD

DESCRIPTION

Requests an excited state calculation using the EOM-CCSD method [Koch90, Stanton93, Koch94a, Kallay04, Caricato12a, Caricato12b, Caricato13, Caricato13a, Caricato13b]. EOM-CCSD is an extension of CCSD for modeling excited states. It provides CCSD-level accuracy for excited state calculations, and requires comparable computational cost (scaling as N6 like CCSD) and additional disk space. This method uses an initial CIS calculation to generate the initial guess for the states followed by an EOM-CCSD analysis.

Note: The EOM-CCSD method exploits abelian symmetry (and not higher point groups).

OPTIONS

Only one of NState and NStPIR should be used to specify the desired number of states. If both are specified, then NState takes precedence. If nothing is specified, then NStPIR=2 is the default.

NStates=N
Try to solve for the lowest N states in EOM. It is a good idea to set N to be larger than the desired number of states to take account of likely state reordering between the CIS and EOM portions.

NStPIR=K
Number of states per symmetry type to solve for in the EOM. The default is 2. Note that the symmetry types correspond to the largest abelian subgroups.

If K is less than zero, then a separate blank line-terminated input section is read specifying the number of states for each symmetry type (irreducible representation). The symmetry ordering can be determined quickly by running a preliminary job with the %KJob L301 Link 0 command. We recommend that you also specify NCISState with a reasonable number of states for the CIS (see below).

Singlets
Solve for singlet excited states. This option only affects calculations on closed-shell systems, for which it is the default.

Triplets
Solve for triplet excited states. This option only affects calculations on closed-shell systems. Must be combined with Singlets to solve for both kinds of states.

NCISState=M
Total number of states to be generated as guesses by CIS. The default with NState is N*Irr.Reps.; with NStPIR, it is (K+2)*Irr.Reps.

Root=N
Specifies the “state of interest.” The default is the first excited state (N=1).

Convergence=N
Sets the convergence calculations to 10-N on the energy and 10-(N-2) on the wavefunction. The default is N=7.

CCConvergence=N
Use 10-N as the convergence on the CCSD and ground-state Z-vector iterations. CCSDConvergence is a synonym for this option. The default is N=8.

LRTransitionDensities
Requests linear response transition densities [Koch90, Koch94a, Kallay04] in addition to EOM-style (unrelaxed) ones. This formalism is more rigorous than the default EOM-CCSD, but it is also computationally more expensive. Note that the two formalisms are equivalent when CCSD provides the exact wavefunction (i.e., the two electron system). Applies only to singlet closed shell and open shell systems.

EnergyOnly
Save time by computing only right eigenvectors, which are sufficient for excitation energies but not for transition densities.

OPTIONS RELATED TO READING/SAVING AMPLITUDES

Amplitudes are saved by default for use in a subsequent calculation. They may be optionally read-in from a previous calculation. The number of states can be increased in the subsequent calculation. The CIS for the guess also reads in vectors and automatically adds states if more guesses are required (provided there is no change in the basis set).

SaveAmplitudes
Saves the converged amplitudes in the checkpoint file for use in a subsequent calculation (e.g., using a larger basis set). Using this option results in a very large checkpoint file, but also may significantly speed up later calculations.

ReadAmplitudes
Reads the converged amplitudes from the checkpoint file (if present). Note that the new calculation can use a different basis set, method (if applicable), etc. than the original one.

ReadGroundStateAmplitudes
Reads in only the ground-state (and Z-vector) amplitudes and not the excited state amplitudes. This option is useful when going from an EOM calculation on singlets to one on triplets. ReadGSAmplitudes is a synonym for this option.

NewCIS
Do a new CIS calculation from scratch when reading EOM amplitudes. This option is needed when reading in singlet states but calculating both singlets and triplets. It is also needed when using a different basis set than was used for a prior calculation retrieved with ReadAmplitudes.

AVAILABILITY

Energies.

EXAMPLES

Using EOM-CCSD. It is often useful to perform a preliminary, smaller EOM-CCSD calculation which solves for a large number of states, and then run a more accurate calculation on the states of interest. The following route sections illustrate this approach:

First calculation:
%Chk=my_eom
# EOMCCSD(NStates=10,EnergyOnly)/Aug-CC-PVDZ

Second calculation:
%Chk=my_eom
# EOMCCSD(NStates=2,ReadAmplitudes,NewCIS)/Aug-CC-PVQZ 

Here is some example output from an EOM-CCSD calculation. This header introduces the results section:

 ==============================================

         EOM-CCSD transition properties

 ==============================================

Next comes the transition electric dipole moment, separated into left and right sections. The dipole and oscillator strengths reported at the end of each line are identical in the two sections as the former is the product of the two:

 Ground to excited state transition electric dipole moments (Au):
      state         X          Y         Z        Dip. S.     Osc.
        1        0.0000     0.0000    -0.3969     0.1601     0.0614
        2        0.0000     0.3963     0.0000     0.1638     0.0756
        3        0.0000     1.3681     0.0000     1.9183     1.0604
 Excited to ground state transition electric dipole moments (Au):
      state         X          Y         Z        Dip. S.     Osc.
        1        0.0000     0.0000    -0.4034     0.1601     0.0614
        2        0.0000     0.4133     0.0000     0.1638     0.0756
        3        0.0000     1.4022     0.0000     1.9183     1.0604

For each state, a separate section lists the CI expansion coefficients for excitation along with the corresponding orbital abelian symmetry type, divided by left and right, and then by excitation type:

Excited State   1:      Singlet-A1    15.6603 eV   79.17 nm  f=0.0614
 Right Eigenvector
 Alpha Singles Amplitudes
     I    SymI    A    SymA    Value
     4      1     6      1    0.675597         Excitation from orbital 4 (occ.) to 6 (virt.).
     3      4     7      4    0.122684
 Beta  Singles Amplitudes
     I    SymI    A    SymA    Value
     4      1     6      1    0.675597
     3      4     7      4    0.122684
 Alpha-Beta  Doubles Amplitudes                Similar information for a double excitation.
     I    SymI    J    SymJ    A    SymA    B    SymB    Value
     4      1     4      1     6      1     6      1   -0.118378
 Left  Eigenvector
 Alpha Singles Amplitudes
     I    SymI    A    SymA    Value
     4      1     6      1    0.676418
     3      4     7      4    0.121856
 Beta  Singles Amplitudes
     I    SymI    A    SymA    Value
     4      1     6      1    0.676418
     3      4     7      4    0.121856
 Alpha-Beta  Doubles Amplitudes
     I    SymI    J    SymJ    A    SymA    B    SymB    Value
     4      1     4      1     6      1     6      1   -0.107806
 Total Energy, E(EOM-CCSD) =  -74.4340926881   Total energy is reported for the state of interest.

RELATED KEYWORDS

CCSD, CIS, SAC-CI

 


Last update: 27 May 2014