Technical Support Information
Last update: 26 September 2006

 

Overlay 4

5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 31 33 34 35 36 37 38 43 44 45 46 47 48 60 61 62 63 64 65 66 67 68 69 71 72 80 81 82 110

IOp(4/5)

Type of guess:

0        Default. This uses the Harris functional unless atoms heavier than Xe are present, in which case Huckel is used.

1        Read guess from the checkpoint file.

2        Guess from model Hamiltonian, chosen via IOp(11).

3        Huckel guess (only valid for NDDO-type methods).

4        Projected ZDO guess.

5        Renormalize and orthogonalize the coefficients which are currently on the read-write files.

6        Renormalize and orthogonalize intermediate SCF results which are on the RWF.

7        Read intermediate SCF results which are on the checkpoint file.

8        Read generalized density specified by IOp(38) from the chk file & generate natural orbitals from it.

9        Read generalized density specified by IOp(38) from the rwf file & generate natural orbitals from it.

100    Convert Guess=Check to Guess=Restart or to generating guess depending on what if anything is on the
          checkpoint file.

1000   Use the simultaneous optimization recipe: S**-0.5 * V.

00000 Default (1 for PBC without alter, otherwise 2).

10000 Re-use Fock matrices instead of orbitals.

20000 Re-use orbitals not Fock matrices.

Note that variable IGuess here has 4,3,2,1 corresponding to 1,2,3,4 above. IGuess values of 10-14 are generated internally and are the sparse versions of 0 and 5-8.

IOp(4/6)

FORCED PROJECTION WHEN GUESS IS READ FROM CARDS (401).

0        FORCE PROJECTED GUESS, EVEN WHEN BASES ARE IDENTICAL.

1        FORCE PROJECTED GUESS, EVEN WHEN BASES ARE IDENTICAL.

2        SUPPRESS PROJECTION.

00      Default orthogonalization (perform)

10      Schmidt orthogonalize guess orbitals.

20      Suppress orthogonalization.

000    Default MO checking (yes).

100    Check MOs for othornormality.

200    Don't check MOs for othornormality.

IOp(4/7)

SCF CONSTRAINTS (401,402,403).

-1       Ignore ILSW and determine on the fly.

0        USE ILSW TO DETERMINE.

1        REAL RHF.

2        REAL UHF.

3        COMPLEX RHF.

4        COMPLEX UHF.

5        COMPLEX, BUT USE ILSW TO DECIDE WHETHER RHF/UHF.

6        REAL ROHF.

IOp(4/8)

ALTERATION OF CONFIGURATION (401).

0        DO NOT ALTER CONFIGURATION.

1        READ IN PAIRS OF INTEGERS in free format INDICATING WHICH PAIRS OF MO'S
          ARE TO BE INTERCHANGED. PAIRS ARE READ UNTIL A BLANK CARD IS ENCOUNTERED.

2        Read in a permutation of the orbitals.

10      READ ALTERATION INFORMATION FROM THE READ-WRITE FILE.

100    Use alpha orbitals for guess for both alpha and beta.

NOTE IF THE CONFIGURATION IS ALTERED ON AN OPEN SHELL SYSTEM, TWO SETS OF DATA AS DESCRIBED ABOVE WILL BE EXPECTED, FIRST FOR ALPHA, SECOND FOR BETA.

IOp(4/9)

SCF symmetry control (401).

0        Default, same as 104

1        Read groups of irreducable representations to combine in the SCF. These are read before any
          orbitals and before alteration commands.

2        Use no symmetry in the SCF.

3        Pick up the symmetry mixing information from the Alteration read-write file.

4        use the full abelian point group, as represented by the symmetry adapted basis functions produced
          by link 301. Initial guess orbital symmetries are assigned.

5        (Use symmetry in SCF if possible, but do not assign initial guess abelian symmetries).

10       Localize all occupied orbitals together and all virtual orbitals together

20       Localize the orbitals within the selected or defaulted symmetry.

100     Assign orbital symmetries for printing in full symmetry.

200     Do not assign orbital symmetries in full symmetry.

1000   Force the guess orbitals to have the Abelian symmetry. This option can cause the symmetry
           adapted basis function common blocks to be modified.

IOp(4/10)

Orbitals to mix to form complex guess (401).

0        Mix the HOMO with the LUMO.

1        Read from cards (2I3) pairs of integers indicating which pairs of orbitals are to be mixed. Reading is
          terminated by a blank card.

NOTE THE SAME CONSIDERATIONS FOR OPEN SHELL SYSTEMS WHICH APPLIED IN IOp(8) APPLY HERE, ALSO.

IOp(4/11)

Type of Guess (401):

For iterative ZDO Guess:

-1      Force old path using old Huckel.

0        Best available (6,4 in order of preference).

1        Old Huckel.

2        CNDO.

3        INDO.

4        New Huckel.

5        Iterative extended Huckel.

6        Harris, converted to IGuess=3 and IZDO=3 here. For unprojected single diagonalization guess:

0        Default (same as 1).

1        Use bare core matrix.

2        Dress core Hamiltonian with QEq-based density.

3        Use Harris Functional.

000    Default, same as 2.

100    Use SG1 and 10^-6 accuracy in Harris guess

200    Use FineGrid and 10^-8 in Harris functional.

300    Use UltraFine and 10^-8 in Harris functional.

400    Use user's IRadAn and 10^-8 in Harris functional.

500    Use (199,974) and 10^-12 in Harris functional.

1000  Save energy in Gen(43) for Harris functional.

n0000 Force IDoV=n in HarFok.

MMMM00000        Use functional MMMM

IOp(4/13)

MIXING OF ORBITALS (401).

0        NO MIXING.

1        LUMO = LUMO + HOMO (ALPHA) AND LUMO = LUMO - HOMO (BETA).
          NOTE THAT THIS WILL USUALLY DESTROY BOTH SPACIAL AND ALPHA/BETA
          SYMMETRY. THE MIXING IS DONE AFTER ANY ALTERATIONS.

IOp(4/14)

Reading of specific orbitals (401).

0        No.

1        Yes. For alpha orbitals, read one card with the format for the orbitals, followed by zero or more sets of IVec (I5) -- vector to replace. If IVec is -1, all NBasis vectors follow. (Vector(I),I=1,NBasis) -- vector in the specified format. Input is terminated by IVec=0. For beta orbitals, the same format as for alpha is used. Note that if alter is also specified, the replacements are read before the corresponding alterations (thus the order is alpha orbitals, alpha alterations, beta orbitals, beta alterations).

IOp(4/15)

Spin-state for initial guess (401).

0        Use multiplicity in /Mol/.

N       Use multiplicity N. This is useful for generating guesses for open-shell singlets or unusual
          spin states involving orthogonal orbitals by treating them as high-spin in the guess (which only does UHF).

IOp(4/16)

Whether to translate basis functions of read in guess (401).

0        Default (same as 2).

1        Use the basis functions as is.

2        Translate to the current atomic coordinates.

3        Translate to the current atomic coordinates, and determine an overall rotation to provide to
          the read- in orbitals.

IOp(4/17)

Number of open-shell orbitals (not electrons) in 402.

0        #open electrons.

N        N.

Number of electrons in the CAS space.

IOp(4/18)

Number of orbitals in CI in 402. Default is number of open shells.

L405: Number of orbitals in the CAS space.

CIOp(4/19)

L402: Spin change in CI (default based on multiplicity).

L405: Trucation level for excitations -- default full CAS.

IOp(4/20)

Type of model (402): (This is also tested in 401 to see whether atomic number greater than 102 are special flags).

0        Default (AM1).

1        CNDO.

2        INDO.

3        MINDO/3.

4        MNDO.

5        AM1.

IOp(4/21)

SCF type (402).

0          Default (no Pulay, no Camp-King, 3/4 point on unless Pulay or Camp-King, use pseudodiagonalization).

1          3/4.

2          No 3/4.

10        No Pulay (DIIS).

20        Pulay.

100      No Camp-King.

200      Camp-King.

1000    Use pseudo-diagonalization.

2000    No pseudo-diagonalization.

Flags for MCSCF (L405):

1            Read options from input stream.

10         Use slater determinants.

100       Just list configurations.

1000     Use determinant basis with Sz=b/2.

10000   Write unformatted file (NDATA) of symbolic matrix elements.

100000 Write formatted file of symbolic matrix elements.

IOp(4/22)

Derivatives? (402).

0        No.

1        Yes.

2        2nd derivatives.

12      Restart 2nd derivatives.

100    Do 1st derivatives analytically if possible. More flags for MCSCF:

1        IFlag2

IOp(4/23)

Number of iterations (402, 403).

0         Default.

N        N.

NDiag in L405.

IOp(4/24)

Whether to update orbitals, eigenvalues, /Mol/, and ILSW on the rwf (402).

0        Default (don't update).

1        Update. (For straight semiempirical calculations).

2        Don't update. (For Opt=MNDOFC).

3        Update, but don't convert from Lowdin orbitals.

10      Update second force array instead of first. (For Opt=MNDOFC).

NRow in L405.

IOp(4/25)

Wavefunction (402).

0        Default (Same as 1).

1        Single determinant, RHF/UHF from IOp(5).

2        ROHF (NYI).

3        Biradical 1/2 CI (only for MINDO3,MNDO,AM1).

4        Closed-shell 1/3 CI (only for MINDO3,MNDO,AM1).

5        General CI, using specified orbitals.

-N      General CI, with N microstates read in.10 binary switches in L405.

IOp(4/26)

Whether to mix orbitals in generated guess density:

0        No

-3      Yes, mix valence occupieds with 0.05 au (according to ZDO) of the HOMO & virtuals within 0.15 au.

-2      Yes, mix valence orbitals and an equal number of virtuals.

-1      Yes, mix all equally.

N       Equal occupations of the lowest N virtuals and high N occupieds.

IOp(4/28)

SCF Convergence (10**-N, default 10**-7).

IOp(4/29)

NC in L405.

IOp(4/31)

Root to solve for in CI (402) (Default is 1).

IOp(4/33)

PRINTING OF GUESS.

0        NO PRINTING.

1        PRINT THE MO COEFFICIENTS.

2        PRINT EVERYTHING.

IOp(4/34)

DUMP OPTION.

0        NO DUMP.

1        TURN ON ALL POSSIBLE PRINTING.

IOp(4/35)

Overlap matrix.

0        Default (copy on disk is used).

1        Overlap assumed to be unity.

2        Copy on disk is used.

IOp(4/36)

ZIndo reformating.

0        No.

1        Yes, reformat ZIndo integrals and wfn into rwf.

IOp(4/37)

Selection of old MNDO parameters in L402:

0        Defaults.

1        Old Si parameters.

2        Old S parameters.

IOp(4/38)

Generalized density to use for natural orbitals:

N        Density number N.

IOp(4/43)

IDiEij = Switch for direct matel calculation.

0        For normal route, with all matels calculated here and stored on disk. Configs printed as normal.

1        For direct route. Eij's calculated here and stored on disk. A flag is automatically sent to L510
          to tell it to compute the remaining atels directly. This type of computation can only be done in a
          CAS comp. Also L510 must use Lanczos. The configurations will not be listed unless see below.

2        As option 1, but all configurations are printed. This will be the only way to print configs in a
          direct matel calc, since there can be many thousands in a large CAS.

IOp(4/44)

1        Prepare input for Mp2 implies IOp(21)=10 Slater Det. option generates data for use in MC-SCF
          generation of zeroth order H note: for b=0 ie no unpaired spins forces use of Clifford Algebra Spinors
          instead of simple determinants

c2IOp(4/45)

Ipairs = number of GVB pairs in GVBCAS.

0        Default. No pairs, normal CAS calculation.

n        There are n pairs: 2*n extra orbitals and electrons will be added into the active space later. L405
          performs a CAS on the inner space, and sets up L510 to compute extra matels etc. implicitly.
         This is a normal GVBCAS calculation.

-n       There are n pairs: 2*n orbitals and electrons of the specified CAS are to be considered to be
          GVB type orbitals when generating configs / matels. L510 will execute normally. This occupies
          as much space as a full CAS in this link, but is smaller subsequently. This is the GVBCAS test mode.

IOp(4/46)

CI basis in CASSCF:

1        Hartree-Waller functions for singlets

2        Hartree-Waller functions for triplets

3        Slater Determinants

10      Write SME on disk

IOp(4/47)

Convert to sparse storage after generating guess.

-1      No, use the Lewis dot structure to generate a sparse guess directly.

0        Default (-1 if sparse is turned on)

N       Yes. Use threshold 10**-N.

IOp(4/48)

Whether to do (sparse) Conjugate Gradient methods in 402:

0        No.

1        Yes. Use Lewis dot structure guess density.

2        Yes. Use diagonal guess density.

IOp(4/60-62)

IOp(60-62) 

Over-ride standard values of IRadAn, IRanWt, and IRanGd.

IOp(4/63)

Flags for which terms to include in MM energy:

0             Default (111111)

1             Turn on all terms, r**-1 Coulomb.

2             Turn on all terms, r**-2 Coulomb.

10           Turn on non-bonded terms.

100         Turn on inversions/improper torsions

1000       Turn on torsions.

10000     Turn on angle bending.

100000   Turn on bond stretches.

IOp(4/64)

Cutoff for MM non-bonded term.

0        Default (no cutoff).

N       10**-N.

IOp(4/65)

Tighten the zero thresholds as the SCF calculation proceeds.

0             Default: Yes, initial threshold 5x10-5.

1             No variable thresholds.

N            10**-N.

N            Yes, initial threshold 10**(-N)

N<-100  Yes, initial threshold 5 x 10 ** (N+100)

IOp(4/66)

Dielectric constant to be used in MM calculations.

0         Eps = 1.0.

N        Eps = N / 1000.

IOp(4/67)

Whether to use QEq to assign MM charges.

0        Default (211 if UFF, 2 otherwise, 1==> 221)

1        Do QEq.

2        Don't do QEq.

00      Default (20)

10      Do for atoms which were not explicitly typed.

20      Do for all atoms regardless of typing.

000    Default (200)

100    Do for atoms which have charge specified or defaulted to 0.

200    Do for all atoms regardless of initial charge.

IOp(4/68)

Convergence criterion for microiterations in L402:

0          Default.

N        10**(-N).

IOp(4/69)

Whether to do a new additional guess in addition to reading orbitals from the rwf:

0        Default: yes if no Guess=Alter, Harris guess, and not a small geometry step.

1        Do the extra guess regardless.

2        Do not do the extra guess.

3        Do the extra guess and store as the initial Fock matrix.

00      Default (10 for PBC, 20 otherwise).

10      Save the Harris guess as an initial Fock matrix.

20      Just generate orbitals from the Harris guess.

IOp(4/71)

Write out AM1 integrals in 402 0/1 No/Yes.

IOp(4/72)

Irreps to keep in MCSCF CI-wavefunction.

0        All

IJKLMNOP        List of up to 8 irrep numbers to include.

IOp(4/80)

The maximum conjugate gradient step size (MMNN)

0000             No maximum step size

MMNN        Step size of MM.NN

IOp(4/81)

Sparse SCF Parameters

MM        Maximum number of SCF DIIS cycles. (MM=00 defaults to 20 cycles, MM=01 turns DIIS off)

NN00     F(Mu,Nu) atom--atom cutoff criterion (angstroms) Mu, Nu are basis functions on the
               same atom. (defaults to no F(Mu,Nu) cutoff).

PP0000   F(Mu,Lambda) atom--atom cutoff criterion (angstroms) Mu, Lambda are basis functions
               on different atoms. (defaults to 15 angstroms).

IOp(4/82)

Conjugate-Gradient Parameters

MM           Maximum Number of CG cycles per SCF iteration. (defaults to 4 CG cycles).

NN00        Maximum Number of purification cycles per CG iteration. (defaults to 3 cycles).

00000        Don't use CG DIIS

10000        Use CG DIIS.

000000      Polak-Ribiere CG minimization

100000      Fletcher-Reeves CG minimization

0000000    Use diagonal preconditioning in Conjugate-Gradient.

1000000    No preconditioning.

IOp(4/110)

Scaling of rigid fragment steps during microiterations.