Technical Support Information
Last update: 26 September 2006

 

Overlay 1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 88 89 90 91 92 94 95 96 97 98 101 102 103 104 105 106 107 108 109 110 111 112 113 114

IOp(1/5)

L103 MODE OF OPTIMIZATION
0        FIND LOCAL MINIMUM
1        FIND A SADDLE POINT
N       FIND A STATIONARY POINT ON THE ENERGY SURFACE WITH N NEGATIVE
          EIGENVALUES OF THE 2ND DERIVATIVE MATRIX

L107: MODE OF SEARCH
0        LOCATE THE MAXIMUM IN THE LST PATH.
1        SCAN THE LST PATH.

IOp(1/6)

L102, L103, L105, L107, L109, L112, L113, L114: MAXIMUM NUMBER OF STEPS (OR NUMBER OF STEPS FOR AN LST SCAN).
0        NSTEP = Max(20,NVAR+10) (L103, L112)
                       = Min(20,NVAR+10) (L102, L105, L109)
                       = Min(40,NVar+20) (L113, L114)
N        NSTEP = N

IOp(1/7)

L103, L105, L109, L112, L113, L114: CONVERGENCE ON THE FIRST DERIVATIVE AND ESTIMATED DISPLACEMENT FOR THE OPTIMIZATION RMS FIRST DERIVATIVE .LT. CONFV, RMS EST. DISPLACEMENT .LT. CONVX=4*CONVF
-1        ConvF = 1/600 HARTREE/BOHR OR RADIAN
 0        CONVF = 0.0003 HARTREE/BOHR OR RADIAN
 N       CONVF = N*10**-6

L116, L117: Convergence on electric field/charges
-1      Default value for optimizations: 10**-7.
0       Default value for single-points: 10**-5 in L116, 10**-7 in L117.
N      10**-N.

IOp(1/8)

L103, L109, L112: MAXIMUM STEP SIZE ALLOWED DURING OPT.
0        DXMAXT = 0.1 BOHR OR RADIAN (L103, Estm or UnitFC).                 
                           = 0.3 Bohr or Radian (L103, Read or CalcFC).                
                           = 0.2 Bohr or Radian (L105).                 
                           = 0.3 Bohr or Radian (L113, L114).
N        DXMAXT = 0.01 * N

L117: General control.
0        Which type of basin to use to partition the density isosurface. Default is 4
1        GradVne
2        GradRho
3        Don't Use Basins, Use only the Center of NuclearCharge
4        Use Interlocking Spheres
N0        Order of Adam's-Bashforth-Moulton (ABM) predictor-corrector method to use in solving diff. eqns. for the grad RHO or Vne trajectories. Default is 4, max is 9.
N00        Number of small steps per ABM step to be used in starting ABM and when "slow down" is needed in ABM. Default is 5.
N000        Which approximation to make. Default is III for Tomasi (interlocking spheres) and IV for general surface.
1000        Apprx. I - Don't Do Self-Polarization or "Compensation"
2000        Apprx. II - Do-Self Polarization, But No Compensation.
3000        Apprx. III - Do Self-Polarization and Compensation.
4000        Apprx. IV - Do III and Allow Surface To "Relax" in Solution if no spheres
 N0000     Whether to evaluate densities using orbitals or density matrix. Default is to use density.
10000        Use MOs.
20000        Use density.

L121: Time step, N*0.0001 fs, default 0.1

IOp(1/9)

L103: Use of Trust radius.

0        Whether to update trust radius (DXMaxT, default Yes). Default is Yes for minima, no for TS.

1        No.

2        Yes.

00        Whether to scale or search the sphere when reducing the step size to the trust radius (Default search for minima, scale for transition states.).

10        Scale.

20        Search.

L107: WHETHER TO MAINTAIN SYMMETRY ALONG THE SEARCH PATH.

0        YES.

1        NO.

L117: Whether to delete points which are too close together:

0        No

1        Yes, using a default criteria (0.05 Angstroms)

-N      Yes, using a (10**-N Angstroms) criteria. How close to get to the isosurface in search.

0        Approx 1.0D-6 (N=20)

N        2.0**-N

L121: Whether to read in initial velocities:

0        Default (same as 1)

1        Generate random initial velocity

2        Read in initial cartesian velocity (Bohr/sec)

3        Read in initial MW cartesian velocity (sqrt(amu)*Bohr/sec)

IOp(1/10)

L103, L105, L109, L112, L113, L114: Input of initial Hessian: All values must be in atomic units (Hartree, Bohr, and radians).

0        Use defaults (not valid for L109).

1        Read ((FC(I,J),J=1,I),I=1,NVAR) (8F10.6) (L103 only).

2        Read I,J,FC(I,J), (5I3,F20.0) (L103 only). End with a blank card.

3        Read from checkpoint file in internal coordinates.

4        Second derivative matrix calculated analytically. (not valid for L109).

5        Read cartesian forces and force constants from the checkpoint file are convert to internal coordinates.

6        Read cartesian forces followed by cartesian force constants (both in format 6F12.8)
          from input stream. followed by a blank line.

7        Use semiempirical force constants.

8        Use unit matrix (default for L105; only recognized by 103).

9        Estimate force constants using valence force field.

10      Use unit matrix throughout.

IOp(1/11)

L103: TEST OF CURVATURE. BOMB THE JOB IF THE SECOND SECOND DERIVATIVE MATRIX HAS THE WRONG NUMBER OF NEGATIVE EIGENVALUES.

0        DEFAULT (TEST for z-matrix or cartesian TS but not for LST/QST or for minimum).

1        DON'T TEST.

2        TEST.

L117: Scaling Factor for Determining Overlaps of VDW atoms

-1      Turn off scaling

0        Default is 1.010

N      1.000 + N*(0.001)

Step size for ABM method in Trudge for isodensity method.

0        0.05 (N=2)

N       0.1/N

IOp(1/12)

L103: OPTIMIZATION CONTROL PARAMETERS

0        USE DEFAULT VALUES

1        READ IN NEW VALUES FOR ALL PARAMETERS (SEE INITBS)

IOp(1/13)

L103,L113,L114,L115: Type of Hessian Update:

0        Default (9 for L103 minimization, 7 for L103 TS, D2Corr and L115, Powell for L113 and L114).

1        Powell (not in L103).

2        BFGS (not in L103)

3        BFGS, safeguarding positive definateness (not inL103 or L115)

4        D2Corr (New, only in L103 and L115).

5        D2Corr (Old, only in L103 and L115).

6        D2Corr (BFGS)

7        D2Corr (Bofill Powell+MS for transition states).

8        D2Corr (No update, use initial Hessian).

9        D2Corr (New if energy rises, otherwise BFGS).

L121: Multi-time step parameter (NDtrC,NDtrP)

0            No multi-time stepping

NN        Iterate density constraints NN times per step

MM00   Do gradient once every MM steps

IOp(1/14)

L103: Max. number of bad steps to allow before attempting a linear minimization (i.e., no quadratic step).

0        Default (0 for TS, 1 for minima).

N        Allow N -- linear only starts with the N+1st.

IOp(1/15)

L103,L109: ABORT IF DERIVATIVES TOO LARGE

-1 or 0        No force test at all.

N                FMAXT = 0.1 * N

IOp(1/16)

L103,L113,L114: MAXIMUM ALLOWABLE MAGNITUDE OF THE EIGENVALUESOF THE SECOND DERIVATIVE MATRIX. IF THE LIMIT IS EXCEEDED, THE SIZE OF THE EIGENVALUE IS REDUCED TO THE MAXIMUM, AND PROCESSING CONTINUES.

0        EIGMAX = 25.0 HARTREE / BOHR**2 OR RADIAN**2

N        EIGMAX = 0.1 * N

IOp(1/17)

L103,L113,L114: MINIMUM ALLOWABLE MAGNITUDE OF THE EIGENVALUES OF THE SECOND DERIVATIVE MATRIX. SIMMILAR TO IOp(16)

0        EIGMIN = 0.0001

N        EIGMIN = 1. / N

IOp(1/18)

L103: Coordinate system.

0        Proceed normally

1        Second derivatives will be computed as directed on the variable definition cards. No optimization will occur.

10        Do optimization in cartesian coordinates.

20        Do full optimization in redundant internal coord.

30        Do full optimization in pruned distance matrix coords.

40        Do optimization in Z-matrix coordinates.

50        Do full optimization in redundant internal coords with large molecular tools.

100      Read the AddRedundant input section for each structure.

1000    Do not define H-bonds

2000    Define H-bonds with no related coordinates (default)

3000     Define H-bonds and related coordinates

10000   Reduce the number of redundant internals

20000   Define all redundant internals

100000        Old definition of redundant internals.

0000000        Default (2000000).

1000000        Skip MM atoms in internal coordinate definitions and do microiterations the old way, in L103.

2000000        Include MM atoms in internal coordinate definitions (no microiterations).

3000000        Skip MM atoms in internal coordinate definitions and do microiterations the new way, in L120.

4000000        Microiterations for pure MM, done in L402.

IOp(1/19)

L103: SEARCH SELECTION

0        Default (same as 6).

2        LINEAR AND STEEPEST DESCENT.

3        STEEPEST DESCENT AND LINEAR ONLY WHEN ESSENTIAL.

4        Quadratic if curvature is correct; RFO if not. Linear as usual.

5        Quadratic if curvature is correct; RFO if not. No linear search.

6        RFO and linear.

7        RFO without linear.

8        Newton-Raphson and linear.

9        Newton-Raphson only.

10      GDIIS and linear

11      GDIIS only.

13      First-order simultaneous optimization.

L113,L114: Search Selection:

0        P-RFO OR RFO STEP ONLY        (DEFAULT)

1        P-RFO OR RFO STEP FOR "WRONG" HESSIAN OTHERWISE NEWTON-RAPHSON

IOp(1/20)

L101, L106, L108, L109, L110: INPUT UNITS

0        ANGSTROMS DEGREES

1        BOHRS        DEGREES

2        ANGSTROMS RADIANS

3        BOHRS        RADIANS

IOp(1/21)

L103,L113,L114: EXPERT SWITCH.

0        NORMAL MODE.

1        EXPERT MODE: CERTAIN CUTOFFS USED TO CONTROL THE OPTIMIZATION WILL BE RELAXED. THESE INCLUDE FMAXT, DXMAXT, EIGMAX AND EIGMIN.

IOp(1/22)

L107: Whether to reorder coordinates for maximum coincidence.

0        Yes.

1        Assume reactant order equals product order.

2        Read in a re-ordering vector from the input.

L115: KIND OF SEARCH:

0        BOTH DIRECTIONS AND GENERATE SEARCH VECTOR

1        FORWARD DIRECTION AND GENERATE S. VECTOR

2        BACKWARD DIRECTION AND GENERATE S. VECTOR

3        BOTH DIRECTIONS AND GENERATE S. VECTOR

4        FORWARD DIRECTION AND READ S. VECTOR 8F10.6

5        FORWARD DIRECTION AND READ S. VECTOR 8F10.6

6        BACKWARD DIRECTION AND READ S. VECTOR 8F10.6

7        BOTH DIRECTIONS AND READ S. VECTOR 8F10.6

IOp(1/23)

L112: Derivative availability.

0        Energy only.

1        Energy + Forces.

2        Energy + Forces + Force constants

IOp(1/24)

Whether to round tetrahedral angles.

0        Default (Yes).

1        Yes, round angles within 0.001 degree.

2        No.

IOp(1/25)

Wether SCRF is used with numerical polarizability:

0        No.

1        Yes, the field in /Gen/ must be cleared each time.

IOp(1/26)

Accuracy of function being optimized: -NNMM Energy 10**-(NN), Gradient 10**-(MM).

-1      Read in values

0        Default (same as 1).

1        Normal accuracy for HF (energy and gradient both 1.d-7).

2        Standard grid accuracy for DFT (Energy 1.d-5, gradient 1.d-4)

3        Fine grid accuracy for DFT (Energy 1.d-7, gradient 1.d-6)

IOp(1/27)

= IJKL (i.e. 1000*I+100*J+10*K+L)

Transition state searching using QST and redundant internal coordinates

L= 0,1     Input one structure, either initial guess of the minimizing structure or transition structure without QST.

L= 2        Input 2 structures, the first one is the reactant, the second one is the product. The union of the two redundant coordinates are taken as the redundant coords for the TS. The values of the TS coord are estimated by interpolating the sturcture of R and P. R and P are used to guide the QST optimization of the TS.

L= 3        Input 3 structures. The first one is reactant the second one is the product. The third one is the initial guess of the transition structure. R and P are used to guide the QST optimization of the TS.

K = 1-9   Interpolation of initial guess of TS between R and P (TS=0.1*J*R + 0.1*(10-J)*P, default J=5)

J = 1        LST constraint in internals

J = 2        QST constraint in internals

J = 3        LST constraint in distance matrix space

J = 4        QST constraint in distance matrix space

I = 0-9     Control parameters for climbing phase of QST (e.g. QSTRad = 0.01*I, default QSTrad = 0.05)

IOp(1/28)

L103: Number of translations and rotations to remove during redundant coordinate transformations:

-2        0.

-1        Normal (6 or 5 for linear molecules).

0         Default, same as -1.

N        N.

IOp(1/29)

L101: SPECIFICATION OF NUCLEAR CENTERS

0        BY Z-MATRIX

1        BY DIRECT COORDINATE INPUT (must set IOp(29) in L202).

2        GET Z-MATRIX AND VARIABLES FROM THE CHECKPOINT FILE.

3        GET CARTESIAN COORDINATES ONLY FROM THE CHECKPOINT FILE.

4        By model builder, model A.

5        By model builder, model B.

6        Get Z-matrix from the checkpoint file, but read new values for some variables from the input stream.

7        Get all input (title, charge and multiplicity, structure) from the checkpoint file.

10      Print details of the model building process.

000    Default (same as 100).

100    Do not abort job if model builder generates a z-matrix with too many variables.

200    Abort job if model builder generates a z-matrix with too many variables.

1000        Read optimization flags in format 50L1 after the z-matrix.

2000        Set all optimization flags to optimize.

3000        Purge flags except the frozen variables.

4000        Rebuild the coordinate system.

5000        (2+3) Purge all flags but keep the coordinate definition.

00000       Default, same as 10000.

10000       Mark Z-matrix constants as frozen variables rather than wired-in constants.

20000       Do not retain symbolic constants.

100000    Generate a symbolic z-matrix using all Cartesians if none is present on the checkpoint file (a hack to make IRCs work with Cartesian input).

200000     Same as one, but retain the redundant internal coordinate definitions.

IOp(1/30)

L103: ARE THE READ-WRITE FILES TO BE UPDATED? THIS OPTION IS SET FOR THE LAST CALL TO 103 IN FREQUENCY CALCULATIONS IN ORDER TO PRESERVE THE VALUES OF THE VARIABLES FOR ARCHIVING. It also suppresses error termination on large gradients.

0        YES

1        NO

IOp(1/32)

TITLE CARD PUNCH CONTROL.

0        DON'T PUNCH.

1        PUNCH.

IOp(1/33)

L101: L102 L103 L106 L109 L110 L113 L114        DEBUG PRINT

0        OFF

1        ON

IOp(1/34)

L101 L102 L103: DEBUG + DUMP PRINT

0        OFF

1        ON

IOp(1/35)

RESTART (L102-L112).

0        NORMAL OPTIMIZATION.

1        FIRST POINT OF A RESTART. GET GEOMETRY, WAVEFUNCTION, ET. FROM THE CHECKPOINT FILE.

IOp(1/36)

CHECKPOINT.

0        NORMAL CHECKPOINT OF OPTIMIZATION.

1        SUPPRESS CHECKPOINTING.

IOp(1/37)

D2E CLEANUP (obsolete)

0        NO CLEANUP.

1        THIS IS THE LAST POINT AT WHICH ANALYTIC SECOND DERIVATIVES WILL BE DONE. DELETE THE D2E FILE AND THE BUCKETS AND TRUNCATE THE READ/WRITE FILES.

IOp(1/38)

Entry control option (currently only by L106, L107, L108, L109, L110, L111, and L112 but not L102, L103, and L105).

0          Continuation of run.

1          Initial entry.

N>1 .    In L103: Initial entry of guided optimization using N levels.

N0        In L106: differentiate Nth derivatives once. In L110 and L111: differentiate energy N times.

000        In L106: differentiate wrt nuclear coordinates.

100        In L106: differentiate wrt electric field.

200        In L106: differentiate wrt field and nuclear.

IOp(1/39)

Step size control for numerical differentiation. (L106, L109, L110, L111). Path step size in L115.

0        Use internal default (0.001 Angstroms in L106, 0.005 A in L109, 0.01 Angstrom in L110, 0.001 au in L111).

N        Use step-size of 0.0001*N (angstroms in L106, L109, L110, electric field au in L111).

-1        Read stepsize (up to 2 for L106, 1 for others), free-format.

-N>1   Use step-size of 0.0001*N atomic units everywhere.

IOp(1/40)

L113, L114: Hessian recalculation.

-1        Pick up analytic second derivatives every time.

0         Just update. The default, execpt for CalcAll.

N        Recalculation the Hessian every N steps.

L116: Whether to read initial E-field:

0        Start with 0.0.

1        Read from checkpoint file.

2        Read from input stream.

IOp(1/41)

Step number of optimization from which to take geometry. -1 for the initial geometry

IOp(1/42)

L103, L115: Number of points along the reaction path in each direction. Default is 6. L117: Cutoff to be used in evaluating densities.

0        1.0D-10

N        1.0D-N

IOp(1/43)

L116: Extent of Reaction Field.

0        Dipole

1        Quadrupole

2        Octapole

3        Hexadecapole

L117: How to define Radii

0        Default is 11

1        Use internally stored Radii, centers will be on atoms

2        Read-in centers and radii on cards

10       Force Merz-Kollman radii (Default)

20        Force CHELP (Francl) recommended radii.

30        Force CHELPG (Breneman) recommended radii.

100        Read in replacement radii for selected atom types as pairs (IAn,Rad) or (Symbol,Rad), terminated by a blank line.

200        Read in replacment radii for selected atoms as pairs (I,Rad), terminated by a blank line. Initial radius of spheres to be placed around attractors to "capture" the gradient trajectories. The final radius is then automatically optimized separately for each atom.

0            0.1

NM        N.M = NM/10

IOp(1/44)

IRC Type

0        Default (same as 3).

1        Cartesian.

2        Internal.

3        Mass-weighted.

L117:         Maximum distance between a nucleus and its portion of the isosurface - used in Trudge only to eliminate, from the outset, points which clearly lie in another basin. This parameter should be chosen with the parameter Cont in mind

0        10.0 au

NM     N.M au = NM/10

L121: Seed for random number generator (ISeed)

-1       Use system time initialize iseed (Note each run will give different results)

0         Use default seed value (ISeed = 398465)

N        Set random number seed to N

IOp(1/45)

Read isotopes in L115.

0        Do not read isotopes.

1        Read Isotopes.

IOp(1/46)

Order of multipoles in numerical SCRF:

0        Dipole

1        Quadrupole

2        Octapole

3        Hexadecapole.

IOp(1/47)

Number of redundant internal coordinates to allow for.

0        Default: 50000

N        N.

IOp(1/48)

IRCMax control.

1        Do IRCMax

20      Include zero-point energy.

CIOp(1/49)

Options to IRC path relaxation (IJKL)

L        2/1 dont/do optimize reactant structure. Default: 1

K        2/1 dont/do optimize product structure. Default: 1

J        3/2/1 dont/QST3/QST2 optimize TS structure (for QST input). Default: 1

I        2/1 unimolecular/bimolecular reaction. Default: unimolecular

IOp(1/52)

L101 and L120: Type of ONIOM calculation:

0/1     One layer, normal calculation

2        Two layers

3        Three layers

00       Default (20)

10       Include electrostatics in model systems using MM charges.

20       No electrostatics included in the model systems

100     Do full square for testing.

N000  Use atomic charge type N-1 during microiterations. The default is MK charges.

IOp(1/53)

L120: Action of each invocation of L120:

0        Do nothing

1        Set up point MM on rwf from initial data

2        Set up point MM on rwf from initial data and restore point MM on chk file if ONIOM data is present there.

3        Restore point M from data on the rwf.

4        Integrate energy

5        Integrate energy and gradient

6        Integrate energy, gradient, and hessian

7        Restore point MM from RWF but do not create a new model system.

NN0        Save necessary information (some rwf's, energy, gradients, hessian) of point NN of the ONIOM grid. NN = MaxLev**2 + 1 (currently 17) to restore real system.

MM000        Next point to do is MM.

Calc Level

High        4--7--9*
               |     |     |
Mid        2--5--8
               |     |     |
Low        1--3--6

               S   M   L        system size

IOp(1/54)

Whether to recover initial energy during IRCMax from chk file:

0        No.

1        Yes.

IOp(1/55)

L103: Options for GDIIS: ICos*1000+IChkC*100+IMix*10+Method form.

L115: IRC optimization.

0        Default, use gradients to find the next geometry.

1        Use displacements to find the next geometry.

IOp(1/56)

Set of atom type names to parse:

0        Accept any.

1        Dreiding/UFF.

2        Amber.

3        Amber allowing any symbol, for use with parameters in input stream.

IOp(1/57)

Whether to produce connectivity:

0        Default (4 if reading geom from chk file and connectivity is there, otherwise 3).

1        No.

2        Yes, read from input stream

3        Yes, generate connectivity.

4        Yes, read from checkpoint file.

5        Yes, read from rwf file.

10       Read modifications.

100     Connectivity input is in terms of z-matrix entries, including dummy atoms.

IOp(1/58)

IRCMax control in L115.

IOp(1/59)

Update of coordinates in L103

0        Default (1 for large opt, 2 for regular)

1        New versions.

2        Old version.

IOp(1/60)

Interpret extra integer and fp values in z-matrix as scan information.

0        Default (No).

1        Yes.

2        No.

IOp(1/61)

How ONIOM should leave the rwf at the end of each geomtry:

0        Default (1).

1        Normal: leave the rwf set up for the low-level calculation on the real system.

2        MOMM: leave the rwf set up for the real system, but with NBasis and NBsUse for the high-level calc on the model system. Useful for treating the full system as having electrons only on the QM atoms.

IOp(1/62)

Counterpoise control.

NN        NN fragments, NN < 50.

IOp(1/63)

Step in counterpoise calculation:

MNN         M = order of derivatives (1=Energy, 2=Gradient,        

NN = 0      Supermolecule

1-NFrag     Fragments with ghost atoms

NFrag+1 - 2*NFrag -- lone fragments

IOp(1/64)

Molecular mechanics force field selection:

0        None.

1        Dreiding.

2        UFF.

3        AMBER.

4        MM2 (NYI).

5        MM3 (NYI).

6        MMFF (NYI).

7        Quartic fitting field (NYI).

000     Use only hard-wired.

100     Use soft and hard-wired, hard-wired has priority.

200     Use soft and hard-wired, soft has priority.

300     Use only soft. Lowest 2 digits then have no meaning.

0000   Do not read modifications to parameter set.

1000   Read modifications to parameter set.

00000 With soft parameters, abort when different parameters match to the same degree.

10000   Use the first when there are equivalent matches.

20000   Use the last when there are equivalent matches.

             If IOp(67)=3, then the default is to apply soft parameters with higher priority.

IOp(1/65)

Control of which terms are included in MM, corresponding to the 'classes' in FncInf.

0            Do all (default)

1            Non-bonded

10          Stretching

100        Bending

1000      Torsion

10000    Out-of-plane

IOp(1/66)

Whether to generate QEQ charges, over-written the values in AtChMM, or to use the values already there.

0         Default (2, 1==> 221)

1         Do QEq.

2         Don't do QEq.

00       Default (10)

10       Do for atoms which were not explicitly typed.

20       Do for all atoms regardless of typing.

000      Default (100)

100      Do for atoms which have charge specified or defaulted to 0.

200      Do for all atoms regardless of initial charge.

IOp(1/67)

Source of MM parameters.

0        Default: 2 if reading geom from chk file, else 1.

1        Generate here, reading from input if requested by IOp(64).

2        Copy from chk file.

3        Pick up non-standard parameters from chk file.

IOp(1/70)

L118 Type of sampling (Nact)

0        Defalt (same as 3)

1        Orthant sampling

2        Microcanonical normal mode sampling

3        Fixed normal mode energy

4        Local mode sampling ( now only Nact = 0 or 3 OK )

IOp(1/71)

Whether to print out input files for each structure along an IRC:

0        No.

1        Yes.

IOp(1/72)

L103: Algorithm choice for microiterations.

L121: Lagrangian constrain method for ADMP (ICType)

Half*Gamma*Tr[(P*P-P)**2] + Lambda*[Tr(P)-Ne] + Eta*Tr(P*P-P)

0        Default Same as 7 if no Mass-Weighting (IOp(76) < 0) Same as 10 if Mass-Weighting (IOp(76) > 0)

1        Use Lambda and Eta only. (Gamma=0)

2        Use Lambda, Eta, Gamma. Gamma = .2

3        Use Lambda, Eta, Gamma. Gamma = 1. Constraints for scalar Mass case:

4        Use exact constraint Sum(ij)[Vij*(P**2-P)ij]

5-7     Iterative Scheme same as 4. Different initial guesses. 7 is default for scalar mass case. Constraints for tensorial Mass:

8-11   Mass-weighting constraints. Documentation maybe found in DVelV1. 10 is default.

IOp(1/73)

L103: NInit for microiterations.

L121: Initial Kinetic energy of the Nuclei (EStrtC)

0        Default (.1 Hartree)

N>0   N*micro-Hartree

N<0   0.0 Hartree

IOp(1/74)

Charge scaling for charge embedding in ONIOM. IJKLMN 6th through 1st nearest neighbors of current layer scaled by I*0.2, J*0.2, etc. 0 ==> 5 (no scaling); all layers are scaled by at least as much as ones farther out. The default is 500.

M        Factor for charges one bond away from link atom

L0        Factor for charges two bonds away from link atom

K00     Factor for charges three bonds away from link atom IJ etc. The actual factors used are: 0: 1.0 1: 0.0 2: 0.2 3: 0.4 4: 0.6 5: 0.8 6-9: 1.0

IOp(1/75)

ADMP control flag (ICntrl)

0        Standard ADMP

1        Read converged density at every step

2        Fix the nuclear coordinates

3        Test time reversability (MaxStp must be even)

00       Default (20).

10       Read stopping parameters from input.

20       Do not read stopping parameters.

IOp(1/76)

+/- XXXXZYYYY = Fictitous electron mass (EMass)

YYYY        Default (1000)
                   IOp(76)>0        YYYY*.0001 AMU MW core functions more than valence functions.
                   IOp(76)<0  YYYY*.0001 AMU. Use uniform scaling for all basis functions
                   (Note YYYY > 9999 makes no sense)

Z                 Mass-weighting option. If IOp(76)<0, Z is meaningless.

XXXX        If PBC: Mass of Box Coordinates (BoxMas) = XXXX*.0001 AMU BoxMas=0        Box coordinates not                    propagated (default).

IOp(1/77)

Initial Kinetic energy of the density matrix (EStrtP) (For UHF, Alpha and Beta each get half this energy) and Option Number to compute initial kinetic energy.

Format of Input: XXYYYY (six digits)

IWType = XX

N = YYYY

(For UHF, Alpha and Beta each get half this energy)

0        Default (0.0 Hartree)

N>0        N*micro-Hartree IWType is used to figure out how the initial velocity is is computed (in gnvelp).

If XXYYYY < 0 : Initial velocity = 0.0 Hartee (i.e., currently same as N=0 above)

IOp(1/78)

Sparse in L121

-N        Sparse here with cutoff 10**(-N), full elsewhere

0        Use full matrices or spase based on standard settings.

1        Use sparse fixed form

IOp(1/79)

IRCMax convergence in L115 Stopping criteria in L118 and L121.

IOp(1/80)

L106: 0/1/2 Cartesian/Normal mode/Internal coordinate differentiation. 2 is NYI.

L118: .eq.1 to surpress the 5th order correction after surface hop has been made in Trajectory Surface Hopping calculations. Needs also IOp(10/80=1) Nuclear Kinetic Energy Thermostat Option. (Currently only Velocity scaling is implemented)

0        No Thermostat.

11XXXXX        Velocity scaling, but only for the first XXXXX simulation steps. (This options is useful, if thermostating in only required during equilibration.

1000000        Velocity scaling, all the way through the simulation.

IOp(1/81)

Nuclear KE thermostat in ADMP -- temperate is checked and scaled every IOp(81) steps.

IOp(1/82)

Temperature for nuclear KE thermostat in L121.

IOp(1/83)

Whether to read in frequencies for electric and magnetic perturbations.

0        Default (No).

1        Yes.

2        No.

IOp(1/84)

Differentiation of frequency-dependent properties.

0        No.

N        Mask for which properties on file 721 will be differentiated.

IOp(1/85)

Band gap calculation in PBC ADMP:

0        Default (No).

1        Diagonalizae Fock matrix to get band gap, evolution, etc.

2        No.

IOp(1/86)

Printing for NMR for ONIOM.

0        Default (1).

1        Print tensors and eigenvalues.

2        Print eigenvectors as well.

IOp(1/87)

ONIOM integration of density.

0        Do not integrate.

1        Integrate current densities.

2        Integrate densities specified by following digits:

K0     Density to use from gridpoint 1

L00    Density to use from gridpoint 2

M000  etc.

K,L,M,etc:

0: SCF

1: MP first order

2: MP2

3: MP3

4: MP4

5: CI one-particle

6: CI

7: QCI/CC

8: Correct to second order

IOp(1/88)

Whether to read in atomic masses (isotopes):

0        Default (1 if geometry read from input, 4 if geometry read from chk)

1        Use most abundant isotopes.

2        Read isotopes from input. The temperature and pressure are read first, for backwards compatibility.

3        Read isotopes from rwf.

4        Read isotopes from chk.

IOp(1/89)

Maximum allowed deviation from average nuclear KE during ADMP, in Kelvin.

IOp(1/90)

To read in the velocity in cartesian coordinates Nuclear Kinetic Energy Thermostat Option. Average energy (in microhartree) to be maintained during Simulation, as required by IOp(80).

IOp(1/91)

Thermostat Option.

IOp(1/92)

Maximum allowed deviation from average nuclear KE specified in IOp(81). Also in microhartree.

IOp(1/94, 95, 96, 97, 98)

IOp(94):        Davidson control for quadratic micro-iterations (see MMOpt2)
IOp(95):        RFO/Davidson control for quadratic micro-iterations (see MMOpt2)
IOp(96):        Davidson control for coupled QM/MM macro step (see MMOpt2)
IOp(97):        RFO/Davidson control for coupled QM/MM macro step (see MMOpt2)
IOp(98):        Control of quadratic micro-iterations and coupled QM/MM quadratic macro step.

<0      Do not use dynamic convergence criteria for the micro-iterations.

0        Default(15).

1        Regular non-coupled macro step.

2        Coupled macro step, full diagonalization.

3        Coupled macro step, direct /w full Hessian incore.

4        Coupled macro step, direct /w MM Hessian incore.

5        Coupled macro step, fully direct.

10       Regular micro-iterations.

20       Quadratic micro-iterations, full diagonalization.

30       Quadratic micro-iterations, direct /w prepared Hessian incore.

40       Quadratic micro-iterations, direct /w raw MM Hessian incore.

50       Quadratic micro-iterations, fully direct.

IOp(1/101, 102, 103, 104)

Phase control in L115 and L118: N1, N2, N3, N4

IOp(1/105)

Reaction direction

00        Default (Same as 10)

10        Forward direction

20        Reverse direction Damped-Velocity Verlet (DVV) options for Dynamic Reaction Path Following

0          Default (Same as 2)

1          Use DVV

2          Do not use DVV

00        Default (Same as 10)

10        Follow the rxn path in the forward direction

20        Follow the rxn path in the reverse direction

000      Default (Same as 200)

100      Time step correction not used

200      Time step correction used but not to recalculate current DVV step

300      Time step correction used and current DVV step recalculated

0000    Default (Same as 1000)

1000    Use DVV stopping criteria

2000    Do NOT use DVV stopping criteria

IOp(1/106)

Damping constant for DVV Dynamic Rxn Path following (v0)

0        Default v0=0.04 (N=400)

N       v0 is set to N*0.0001

IOp(1/107)

Error tolerance for DVV time step correction (Error)

0        Default Error=0.003 (N=30)

N       Error=N*0.0001

IOp(1/108)

Gradient magnitude for DVV stopping criteria (Crit1)

0        Default (N=15)

N       N*0.0001

IOp(1/109)

Force-Velocity angle for DVV stopping criteria (Crit2)

0        Default (90 Degrees)

N       Use N Degrees

IOp(1/110)

Scaling of rigid fragment steps during microiterations.

0        Do not scale

1        Scale with 1/NRA        (NRA = number of atoms in fragment)

2        Scale with 1/Sqrt(NRA)

-n       Scale with 1/n

IOp(1/111)

Step-size to use with steepest descent when L103 is having trouble:

-N      Scale up to RMS step of N/1000 if DXRMS is less.

-1       Effectively disables the scaling

0        Default (50)

N       Scale up or down to maximum change in a variable of N/1000

IOp(1/112)

Temperature for thermochemistry.

0        Default (standard temperature, unless read in).

N       N/1000 degrees.

IOp(1/113)

Pressure for thermochemistry.

0        Default (1 atomosphere, unless read in).

N       N/1000 atmospheres.

IOp(1/114)

Scale factor for harmonic frequencies for use in thermochemistry and harmonic vibration-rotation analysis.

0        Default (1 unless specified by IOp in overlay 7 or read in).

N       N/1000000.