
Probationary Faculty Development Grant Final Report

Spring 2020

Yuan Cheng, Department of Computer Science, ECS

Title

A Web-based Interactive Algorithm Simulator for Computer Science Courses

Objectives

This project aims to enhance the Computer Science undergraduate curriculum by using
visualization and animation in an active way. Visualization uses images to enhance
understanding, while animation refers to the use of visual displays that change over time. We
develop a web application, named ALVIS (ALgorithm VISualizer). This application generates a
collection of interactive animation projects for an operating systems class (i.e., CSC 139
Operating System Principles), including CPU scheduling, memory page replacement, and disk
head scheduling. Each animation will illustrate a concept and encourage students to examine the
concept in depth. Students can tune the parameters to change the animations. These animations
should enhance the student’s understanding of the concepts and making learning more enjoyable
and challenging.

Description

This section describes the expected features, the required technologies to implement those
features, the expected use, and the expected users.

Description of Features

ALVIS features three families of algorithms from CSC 139 Operating System Principles.

1. CPU Scheduling
a. First Come, First Served (FCFS)
b. Shortest Job First (SJF)
c. Shortest Remaining Time First (SRTF)
d. Round Robin (RR)
e. Non-preemptive Priority
f. Preemptive Priority

2. Memory Page Replacement
a. First In First Out (FIFO)
b. Optimal (OPT)
c. Least Recently Used (LRU)

3. Disk Head Scheduling
a. First Come, First Served (FCFS)
b. Shortest Seek Time First (SSTF)
c. SCAN

d. C-SCAN
e. LOOK
f. C-LOOK

Users can select an algorithm from the dropdown menu on left side panel to practice. They can
type the input parameters in the textboxes and hit the “Run” button. The application will execute
the algorithm and display the output on the webpage accordingly.

For CPU scheduling algorithms, the output will be shown in the form of a Gantt chart. The
average waiting time and the average turnaround time will also be calculated and displayed.

For memory page replacement, the contents of each physical memory frame will appear along
with the total number of page faults.

For disk head scheduling algorithms, a graph that shows the simulated traversal of a disk head
will be generated.

Required Technologies

• HTML
• CSS
• Javascript: React.js, Node.js
• Git

Expected Use

Students can use this application to practice knowledge after class and before exams. Instructors
can use it to demonstrate the behavior of these algorithms in class.

Expected Users

Computer Science students and faculty. In the future, the coverage can be extended to the public.

Results

As of the end of Summer 2020, a prototype system has been implemented and running on a node
server provided by CSUS IRT. Users with a valid CSUS account will (eventually) be able to
access the application from within the campus network or via a VPN connection.

Here are some screenshots taken from sample runs.

CPU Scheduling

Figure 1 shows the initial view of CPU Scheduling visualization. Users can add the information
of each process, such as process ID, arrival time, burst time. If it is a priority algorithm, the
priority level of each process is also part of the input. The added processes will appear at the
bottom of the page. Users can then choose an algorithm from the dropdown menu. For certain

algorithms, they can also tick the box to indicate if the algorithm is preemptive or non-
preemptive.

Figure 1: An initial view of CPU Scheduling visualizer

Figure 2: A sample run of Round Robin algorithm

Figure 2 shows a sample run of the Round Robin scheduling algorithm. The Gantt chart clearly
illustrates which process executes during which interval. Different processes are assigned with
different colors.

Memory Page Replacement

Figure 3 presents the initial view of Page Replacement algorithms. Users can choose an algorithm
from the dropdown menu and specify the number of physical frames along with a sequence of
memory page numbers.

Figure 3: An initial view of Page Replacement visualizer

Figures 4 and 5 show a sample run of FCFS and OPT page replacement algorithms, respectively.
The application outputs the content of each frame at each step. A page fault is indicated by a red
cross, while a green checkmark implies that there is no page fault. The total number of page faults
are shown at the bottom.

Figure 4: A sample run of FCFS replacement algorithm

Figure 5: A sample run of OPT replacement algorithm

Disk Head Scheduling

Figure 6 shows the initial view of Disk Head Scheduling algorithms. Users can choose an
algorithm from the dropdown menu and set the initial moving direction of the disk head. The
initial position of the disk head, total number of cylinders, and the sequence of cylinder numbers
of disk access requests can be specified in the text boxes.

Figure 6: An initial view of Disk Head Scheduling visualizer

After the chosen algorithm is executed, the movement of the disk head will be displayed on the
webpage. Figure 7 shows a sample run of the FCFS disk head scheduling algorithm, while Figure
8 exhibits the behavior of the C-LOOK algorithm with the initial moving direction set to outward.

Figure 7: A sample run of FCFS disk scheduling

Figure 8: A sample run of C-LOOK disk scheduling

Future Work

The application is currently hosted on a testing server. We will migrate it to a production server
soon and enable access for CSC 139 students in Fall 2020. As students try out the application
throughout the semester, we will collect feedbacks and bug reports and come up with a
sustainable plan for running and extending the application in the next couple of years.

