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Background

Methodology

Results

Conclusion
Spatial transcriptomics (ST) that was first featured in 2020 [1] can both 
profile the transcriptome of the cells and preserve its spatial information 
within tissue section. As the technology underwent rapid development in 
recent years, spatial transcriptomics technologies have become primary 
tools for biologists to understand cells, their microenvironments [2], tumor 
development [3], and treatment response [4]. However, the technologies are 
still in early stage where the assays can only measure small regions with 
mixtures of cells and are unable to provide single-cell information.

hypothesis testing
approach to determine the set of genes that 

are likely to be
impacted by dropouts

Objectives

We present Single-cell and Spatial transcriptomics Alignment (SSA), a novel 
technique that employs an optimal transport algorithm to assign individual 
cells from a scRNA-seq atlas to their spatial locations in actual tissue based 
on their expression profiles. 

Data: Downloaded dataset contains 100,064 cells with known. We 
transform the high-resolution ST data into 01 low-resolution ST dataset 
and 10 scRNA-seq datasets.
Metric: Euclidean distance, Manhattan distance, and KL-divergence [5]
Methods: four state-of-the-art methods, SpaOTsc [6], Tangram [7], Seurat [8], 
and DistMap [9]
Results: SSA can recover the cells’ spatial location with minimal difference and 
lowest KL-divergence score for each cell type.

Feature Selection and Data Transformation: Select 5,000 genes with the 
highest variance and use Z-score transformation to scale and center the data.
Cell to Spot Alignment using Sinkhorn Algorithm: 
• Given two X and Y as the scaled scRNA-seq and ST matrices, we calculate the

pairwise Pearson’s correlation. Then, we calculate the pair wise distance
between cells and spots.

• Given the distance matrix, we will use Sinkhorn algorithm to compute the
optimal transport plan from cells-to-spots. This step involves solving an
optimization problem that seeks to find the “cheapest” way to transport mass
from the cells to the spots, where the “cost” of transporting mass is given by
the distance matrix.

• The output of the Sinkhorn algorithm is a matrix Tm×n where each value
represents the mass of a cell transported to a spot. We then transform it into a
probability matrix with the same dimension and assign cells to spots based on 
the maximum probability.
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• Outperforms existing state-of-the-art 
approaches.

• scCAN is the fast method for big data.
• scCAN is robust to dropouts.
• scCAN is the best method to predict true 

number of cell types.

Future work

Expanding scan to work with other data types such 
as multi-omics data [10]. 
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