Part Per Million (ppm): In chemistry it is a measure of concentration that is used where low levels of concentration are significant.

- Parts-per notation is a dimensionless quantity.
- To show the quantity being measured, it is sometimes helpful to use the same units in both the numerator and denominator.

$$
p p m=\frac{m g \text { solute }}{m g \text { solute }+m g \text { solvent }} \times 10^{6} \quad, \text { mass }_{\text {solute }} \ll \text { mass }_{\text {solution }}
$$

Note:

- ppm (mass / mass), by mass

Example: $1 \mathrm{mg} / 1 \mathrm{Kg}=1 \mathrm{ppm}$ (W/W)

- \quad ppm (volume / Volume), by volume

Example: $\quad 1 \mathrm{~mL} / 1 \mathrm{~m}^{3}=1 \mathrm{ppm}$ (V/V)

- ppm (mass/volume)

Example: $1 \mathrm{mg} / \mathrm{L}=1 \mathrm{ppm}(\mathrm{W} / \mathrm{V})$

- Where: one liter of water has mass of approximately one kilogram.

A percentage is a way to show a proportion or a fraction as a whole number. Note: A number such as "24\%" (24 percent) means: $\frac{24}{100}$

Percent verses ppm solution:

$10000 \mathrm{ppm}=\frac{10000}{1000000}=\frac{1}{100}=1 \%$

Example:
Hemoglobin (the oxygen carrier protein in red blood cells) contains 0.340% iron by mass; calculate the mass of Fe in ppm.

$$
\frac{1 \%}{0.340 \%}=\frac{10000 \mathrm{ppm}}{?}
$$

? = 3400 ppm (gram Fe in Hemoglobin)

Preparation of Standard $\mathbf{M g}^{\mathbf{2 +}}$ Solution:

Dissolve 16.5817 g of MgO (analytical Reagent Grade) in 52 mL of pure HNO3 (70\%) and dilute to1 liter with DI water, to make 10000 ppm of Mg .

Calculation:

$$
\frac{10000 \mathrm{mg} \mathrm{Mg}}{L} \times \frac{1 \mathrm{~g} \mathrm{Mg}}{1000 \mathrm{mg} \mathrm{Mg}} \times \frac{40.31 \mathrm{~g} \mathrm{MgO}}{24.31 \mathrm{~g} \mathrm{Mg}} \times 1 \mathrm{~L}=16.58 \mathrm{~g} \text { of } \mathrm{MgO}
$$

Based on the following label on the HNO_{3} container find the molarity (M) of nitric acid:
Nitric Acid (HNO3):
Mass percent: 70.0\%
Density: $1.42 \mathrm{~g} / \mathrm{mL}$
Solution:
(70.0%) means: 70 g of 100 g of this solution is pure nitric acid.
mole $=\frac{\text { mass }}{M . W .}=\frac{70.0 \mathrm{~g}}{63.0 \mathrm{~g} / \mathrm{mole}}=1.11$ mole
Next, the volume of 100.0 g of HNO_{3} solution is:

$$
\text { volume }=\frac{\text { mass }}{\text { density }}=\frac{100.0 \mathrm{~g}}{1.42 \mathrm{~g} / \mathrm{cm}^{3}}=70.4 \mathrm{~cm}^{3}
$$

$$
\text { molarity }=\frac{1.11 \mathrm{~mol}}{70.4 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=15.8 \mathrm{M} \text { Of } \mathrm{HNO}_{3}
$$

Find the volume of the concentrated HNO 3 to dissolve the MgO solid.
Solution:

$$
\begin{aligned}
& \mathrm{MgO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \quad \mathrm{~mol} \text { of } \mathrm{MgO}=16.58 / 40.31=0.41 \mathrm{~mol} \\
& \mathrm{~mol} \text { of } \mathrm{HNO}=2 \mathrm{~mol} \text { of } \mathrm{MgO}=0.82 \mathrm{~mol}
\end{aligned}
$$

$$
\frac{15.8 \mathrm{~mol} \mathrm{HNO}}{1000} \times \frac{0.82}{?}
$$

? $=52.1 \mathrm{~mL}$ of HNO 3 needs to dissolve 16.58 g of MgO

