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INTRODUCTION

The objective of this section is to ensure that you have the necessary foundation in statistics so that you can maximize your learning in data analysis.  Hopefully, much of this material will be review.  Instead of repeating Statistics 1, the pre-requisite for this course, we discuss some major topics with the intention that you will focus on concepts and not be overly concerned with details.  In other words, as we “review” try to think of the overall picture!
Statistic vs. Parameter

In order for managers to make good decisions, they frequently need a fair amount of data that they obtain via a sample(s).  Since the data is hard to interpret, in its original form, it is necessary to summarize the data.  This is where statistics come into play -- a statistic is nothing more than a quantitative value calculated from a sample.

Read the last sentence in the preceding paragraph again.  A statistic is nothing more than a quantitative value calculated from a sample.  Hence, for a given sample there are many different statistics that can be calculated from a sample.  Since we are interested in using statistics to make decisions there usually are only a few statistics we are interested in using.  These useful statistics estimate characteristics of the population, which when quantified are called parameters.

The key point here is that managers must make decisions based upon their perceived values of parameters.  Usually the values of the parameters are unknown.  Thus, managers must rely on data from the population (sample), which is summarized (statistics), in order to estimate the parameters.

Mean and Variance

Two very important parameters which managers focus on frequently are the mean and variance
.  The mean, which is frequently referred to as “the average,” provides a measure of the central tendency while the variance describes the amount of dispersion within the population.  For example, consider a portfolio of stocks.  When discussing the rate of return from such a portfolio, and knowing that the rate of return will vary from time period to time period
 one may wish to know the average rate of return (mean) and how much variation there is in the returns [explain why they might be interested in the mean and variance].

Sampling Distribution
In order to understand statistics and not just “plug” numbers into formulas, one needs to understand the concept of a sampling distribution.  In particular, one needs to know that every statistic has a sampling distribution, which shows every possible value the statistic can take on and the corresponding probability of occurrence.
What does this mean in simple terms?  Consider a situation where you wish to calculate the mean age of all students at CSUS.  If you take a random sample of size 25, you will get one value for the sample mean (average)
 which may or may not be the same as the sample mean from the first sample.  Suppose you get another random sample of size 25, will you get the same sample mean? What if you take many samples, each of size 25, and you graph the distribution of sample means.  What would such a graph show?  The answer is that it will show the distribution of sample means, from which probabilistic statements about the population mean can be made.

Normal Distribution

For the situation described above, the distribution of the sample mean will follow a normal distribution.  What is a normal distribution?  The normal distribution has the following attributes:

· It depends on two parameters - the mean and variance
· It is bell-shaped

· It is symmetrical about the mean

[You are encouraged to use StatGraphics Plus and plot different combinations of means and variances for normal distributions.]

From a manager’s perspective it is very important to know that with normal distributions approximately:

· 95% of all observations fall within 2 standard deviations of the mean

· 99% of all observations fall within 3 standard deviations of the mean.

Confidence Intervals
Suppose you wish to make an inference about the average income for a group of people.  From a sample, one can come up with a point estimate, such as $24,000.  But what does this mean?  In order to provide additional information, one needs to provide a confidence interval.  What is the difference between the following 95% confidence intervals for the population mean?




[23000  ,  24500]
and
[12000  ,  36000]

Hypothesis Testing

When thinking about hypothesis testing, you are probably used to going through the formal steps in a very mechanical process without thinking very much about what you are doing.  Yet you go through the same steps every day.  

Consider the following scenario:

I invite you to play a game where I pull a coin out and toss it.  If it comes up heads you pay me $1.  Would you be willing to play?  To decide whether to play or not, many people would like to know if the coin is fair.  To determine if you think the coin is fair (a hypothesis) or not (alternative hypothesis) you might take the coin and toss it a number of times, recording the outcomes (data collection).  Suppose you observe the following sequence of outcomes, here H represents a head and T represents a tail -

H H H H H H H H T H H H H H H T H H H H H H

What would be your conclusion?  Why?

Most people look at the observations and notice the large number of heads (statistic) and conclude that they think the coin is not fair because the probability of getting 20 heads out of 22 tosses is very small, if the coin is fair (sampling distribution).  It did happen; hence one rejects the idea of a fair coin and consequently does not wish to participate in the game.

Notice the steps in the above scenario

1. State hypothesis

2. Collect data

3. Calculate statistic

4. Determine likelihood of outcome, if null hypothesis is true

5. If the likelihood is small, then reject the null hypothesis

If the likelihood is not small, then do not reject the null hypothesis

The one question that needs to be answered is “what is small?”  To quantify what small is one needs to understand the concept of a Type I error.  (We will discuss this more in class.)

P-Values

In order to simplify the decision-making process for hypothesis testing, p-values are frequently reported when the analysis is performed on the computer.  In particular a p-value
 refers to where in the sampling distribution the test statistic resides.  Hence the decision rules managers can use are:

· If the p-value is (  alpha, then reject Ho

· If the p-value is  > alpha, then do not reject Ho.

The p-value may be defined as the probability of obtaining a test statistic equal to or more extreme than the result obtained from the sample data, given the null hypothesis H0 is really true.

QUALITY -- COMMON VS SPECIFIC VARIATION
During the past decade, the business community of the United States has been placing a great deal of emphasis on quality improvement.  One of the key players in this quality movement was the late W. Edwards Deming, a statistician, whose philosophy has been credited with helping the Japanese turn their economy around.

One of Deming’s major contributions was to direct attention away from inspection of the final product or service towards monitoring the process that produces the final product or service with emphasis of statistical quality control techniques.  In particular, Deming stressed that in order to improve a process one needs to reduce the variation in the process.

Common Causes and Specific Causes
In order to reduce the variation of a process, one needs to recognize that the total variation is comprised of common causes and specific causes.  At any time there are numerous factors which individually and in interaction with each other cause detectable variability in a process and its output.  Those factors that are not readily identifiable and occur randomly are referred to as the common causes, while those that have large impact and can be associated with special circumstances or factors are referred to as specific causes.

To illustrate common causes versus specific causes, consider a manufacturing situation where a hole needs to be drilled into a piece of steel.  We are concerned with the size of the hole, in particular the diameter, since the performance of the final product is a function of the precision of the hole.  As we measure consecutively drilled holes, with very fine instruments, we will notice that there is variation from one hole to the next.  Some of the possible common sources can be associated with the density of the steel, air temperature, and machine operator.  As long as these sources do not produce significant swings in the variation they can be considered common sources.  On the other hand, the changing of a drill bit could be a specific source provided it produces a significant change in the variation, especially if a wrong sized bit is used!

In the above example what the authors choose to list as examples of common and specific causes is not critical, since what is a common source in one situation may be a specific source in another and vice versa.  What is important is that one gets a feeling of a specific source, something that can produce a significant change and that there can be numerous common sources that individually have insignificant impact on the process variation.

Stable and Unstable Processes
When a process has variation made up of only common causes then the process is said to be a stable process, which means that the process is in statistical control and remains relatively the same over time.  This implies that the process is predictable, but does not necessarily suggest that the process is producing outputs that are acceptable as the amount of common variation may exceed the amount of acceptable variation.  If a process has variation that is comprised of both common causes and specific causes then it is said to be an unstable process, which means that the process is not in statistical control.  An unstable process does not necessarily mean that the process is producing unacceptable products since the total variation (common variation + specific variation) may still be less than the acceptable level of variation.

In practice one wants to produce a quality product.  Since quality and total variation have an inverse relation (i.e. less {more} variation means greater {less} quality), one can see that a goal towards achieving a quality product is to identify the specific causes and eliminate the specific sources.1 What is left then is the common sources or in other words a stable process.  Tampering with a stable process will usually result in an increase in the variation that will decrease the quality.  Improving the quality of a stable process (i.e. decreasing common variation) is usually only accomplished by a structural change, which will identify some of the common causes, and eliminate them from the process.

For a complete discussion of identification tools, such as time series plots to determine whether a process is stable (is the mean constant?, is the variance constant?, and is the series random -- i.e. no pattern?) see the Stat Graphics Tutorial.  The runs test is an identification tool that is used to identify nonrandom data.

[image: image3.png]
[ intentionally left blank] 

[image: image4.png]

CONTROL CHARTS
In this section we first provide a general discussion of control charts, then follow up with a description of specific control charts used in practice. Although there are many different types of control charts, our objective is to provide the reader with a solid background with regards to the fundamentals of a few control charts that can be easily extended to other control charts.

Control charts are statistical tools used to distinguish common and specific sources of variation. The format of the control chart, as shown in Figure 1 below, is a group made up of three lines where the center line = process average, upper control limit = process average + 3 standard deviations and lower control limit = process average - 3 standard deviations.




Figure 1.  Control Chart (General Format)

The control charts are completed by graphing the descriptive statistic of concern, which is calculated for each subgroup. There are usually 20 to 30 subgroups used per each graph. The concept of how to form subgroups is very important and will be discussed later. For now it is important to state that the horizontal axis is time, so that we can view the graphed points from earliest to latest as we read the graph.

Recall that our goal in constructing control charts is to detect sources of specific variation, which, if they exist can be eliminated, thereby decreasing the variation of the process and hence increasing quality. Furthermore, recall that the existence of specific variation is the difference between an unstable process and a stable process. Therefore the detection of specific variation will be equivalent to being able to differentiate between unstable and stable processes.

Since stable processes are made up of only common causes of variation, the control charts of stable processes will exhibit no pattern in the time series plot of the observations. Departures, i.e. a pattern in the time series plot, indicate an unstable process that means that specific sources of variation exist, which need to be exposed of and eliminated in order to reduce variation and hence improve quality.  As we consider each control chart, we will focus on whether there is any information in the series of observations that would be evident by the existence of a pattern in the time series plot of the observations.

Rather than showing what the control chart of a stable process looks like, it is helpful to first consider charts of unstable processes that occur frequently on practice.

 We present seven graphs on the following pages for consideration.  The following will summarize the seven examples displayed:

Note that in Figure 2. Chart A the process appears to be fairly stable with the exception of an outliner (see subgroup 7). If this were the case then one would want to determine what caused that specific observation to be outside the control limits and based upon that source take appropriate action.

In Figure 3, Chart B, note that there are two observations, close to each other that are outside the control limits. When this occurs there is much stronger evidence that the process is out of control than in Figure 2. Chart A.  Again one would need to investigate the reason for these outliers and take appropriate action.

Illustrated in Figure 3. Charts C and D is the concept of a trend. Notice in Chart C there is a subset of observations that constitute a downward trend, while in Figure 3. Chart D there is a subset that constitutes an upward trend.

In Figure 3, Chart E, a cyclical pattern is depicted. These types of patterns occur frequently when the process is subject to a seasonal influence. If this is the case, then one needs to account for the seasonality and make the necessary adjustments.

Presented in Figure 3. Chart F, is a situation where there is a change in the level of a process. Notice how the level slides upward, thereby indicating a change in the level. In this situation, one would need to ascertain why the slide took place and then take appropriate action.

The final case illustrated, Figure 3. Chart G, is one where there is a change in the variance (dispersion). Notice that the first part of the sequence has a much smaller variance than the latter part. Clearly an event occurred which altered the variance and needs to be dealt with appropriately.




Figure 2.  Chart A
Charts B through F appear in Figure 3 on the next page.




Figure 3.  Charts B through G

Types Of Control Charts

As we mentioned previously, there are a large number of different control charts that are used in practice but for our purposes we will consider just a few. For a given application the type of control chart that should be employed depends upon the type of data being collected. There are three general classes of data:

· continuous data

· classification data

· count data

Continuous data is measurable data such as thickness, height, cost, sales units, revenues, etc.  The latter two classes (classification and count) are examples of attribute data. For classification, data is bi-polar, for example, success/failure, good/bad, yes/no or conforming/non-conforming. Count data is rather straightforward -- number of customers served during the lunch hour, number of blemishes per sheet (8’ by 4’) of particleboard, number of failed parts per case, and so forth.

For many applications the data to be collected can be either continuous or attribute. For example, when considering the size of holes discussed earlier one can record the diameter in millimeters (continuous) or as simply acceptable or unacceptable (attribute).  Whenever possible, one should elect to record continuous data since fewer measurements are required per subgroup for continuous charts, 1 to 10, than for attribute charts which typically require 30 to 1000.  The fewer the number of observations needed, the quicker the possible response time when problems surface.

We now consider examples for each of the control charts stated previously. First we will consider continuous data, in particular the X-bar and R charts. Then we will consider the P chart (classification data). Lastly we present the C chart (count data).

Continuous Data
X-bar and R Charts
To demonstrate the X-bar and R charts, we utilize data generated over a twenty-week period of time from the SR Mattress Co. The daily output of usable mattress frames for both shifts are shown below:

	SR Mattress Company

	Week
	Mon
	Tue
	Wed
	Thur
	Fri

	1
	53
	56
	44
	57
	51

	2
	46
	58
	53
	59
	46

	3
	47
	56
	55
	44
	57

	4
	58
	53
	46
	44
	51

	5
	50
	55
	55
	46
	46

	6
	54
	55
	44
	51
	53

	7
	54
	54
	54
	49
	55

	8
	46
	58
	52
	51
	58

	9
	46
	49
	46
	45
	52

	10
	54
	47
	55
	45
	47

	11
	48
	51
	46
	54
	49

	12
	58
	45
	55
	44
	45

	13
	56
	44
	54
	56
	52

	14
	49
	48
	55
	53
	57

	15
	59
	45
	54
	58
	50

	16
	53
	50
	44
	55
	53

	17
	54
	50
	59
	45
	52

	18
	58
	51
	55
	47
	55

	19
	56
	44
	46
	52
	53

	20
	54
	47
	51
	54
	59


Table 1.  SR Mattress Company Data

The first question one needs to answer before analyzing the data is “How will the subgroups be formed?” We will address this issue later, but to keep things simple, we will define the subgroups as being made up of the 5 daily outputs for each shift per week.  In their respective time series plots, x-bar equals 51.42 with the lower and upper control limits of 44.931 and 59.909, respectively. [When using StatGraphics, grid lines appear in the graphs and the control limits are not initially shown.  One can insert the control limits by left clicking on the graph (pane) and then right clicking in order to "pull up" the options selection.  We eliminated the background grids in order to highlight the other features.
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Figure 4.  SR Mattress Company X-Bar and Range Chart

From these charts, the X-bar chart and range chart, we can see that none of the values are outside the control limits, thereby suggesting a possible stable process. On closer examination one may see some possible patterns that should be investigated for possible sources of specific variation. Do you see any such patterns? If so, what might be a possible scenario to describe the pattern and what type of action might management take if your scenario is true.

Given the previous example, hopefully the reader has an intuitive feel for what X-bar charts and R charts represent. We will leave it to the computer to calculate the upper and lower control limits.

Before moving on, we need to take another look at the question about how the subgroups were defined. The division described above will highlight differences between different weeks. However, what if there was a difference between the days of the workweek? For example, what if a piece of required machinery is serviced after closing every Wednesday, resulting in higher outputs every Thursday, would our sub-grouping detect such an impact? In this case one might choose to subgroup by day of the week.  Hopefully, one can see how the successful implementation of control charts may depend upon the design of the control chart itself that is a function of knowing as much as possible about possible sources of specific variation.

Two final points about continuous variable control charts. The first is that when the subgroups are of size one, the X-bar chart is the same as a chart for the original series. In this case the R chart may be replaced by a moving average chart based upon past observations. The second point is that in our scenario we required each subgroup to be of the same size (equal number of observations). For example, what if there were holidays in our sample? In this case an R chart, where the statistic of concern is the range, could be replaced by an S chart, which relies on the sample standard deviation as the statistic of concern. In practice, the R charts are used more frequently with exceptions such as the holiday situation just noted.

P Charts

The P chart is very similar to the X-bar chart except that the statistic being plotted is the sample proportion rather than the sample mean. Since the proportion deals with the percentage of successes
, clearly the appropriate data for P charts needs to be attribute data where the outcomes for each trial can be classified as either a success or a failure (conform or non-conform, yes or no, etc.).  The subgroup size must be equal so the proportion can be determined by dividing the outcome by the subgroup size.

To illustrate the P chart, a situation is considered where we are concerned about the accuracy of our data entry departments work. In auditing their work over the last 30 days, we randomly selected a 

sample of 100 entries for each day and classify each entry as correct or incorrect. The results of this audit are as follows:

Day

      #  Incorrect

              Day

      # Incorrect

  1


2


16


1


  2


7


17


5


  3


6


18


9


  4


2


19


6


  5


4


20


4


  6


3


21


3


  7


2


22


3


  8


6


23


5


  9


6


24


3


 10


2


25


6


 11


4


26


6


 12


3


27


5


 13


6


28


2


 14


2


29


3


 15


4


30


4

Table 2.  Number Incorrect Entries in Sample Size of 100
Given the data above, one can easily calculate the proportions of incorrect entries per day by taking the number of incorrect entries and dividing by the total number of entries for that day, which in our example were 100 each day. This may seem to be an unnecessary task at this time, since we are essentially just scaling the data. This scaling, however, does allow us to work with the P statistic,  rather than the total number of occurrences that would produce another type of chart called the NP chart. We have chosen not to discuss the NP chart since it provides the same information as the P chart for subgroups of the same size, while the P chart allows us more flexibility, so that we can consider cases when the subgroups are not all of the same sample size.
 The P chart for the data entry example is shown below.




Figure 5.  Proportion Control Chart

From the P chart displayed above, one can see that all of the observed values fall within the control limits and that there does not appear to be any significant pattern. One might be concerned with the value for the 18th observation that is .09 and look to see if a particular event triggered this larger value. Keep in mind, however, that common variation may very well cause this larger variation.

C Charts

The C chart is based upon the statistic that counts the number of occurrences in a unit, where the unit may be related to time or space. Whereas the P chart was related to the binomial distribution, the C chart is related to the Poisson distribution. To demonstrate the C chart we consider a situation where we are interested in the number of defective parts produced daily at the AKA Machine Shop. Over the past 25 days the number of defective parts per day are  shown below:


Day
                  # Defective Parts
Day

# Defective Parts

 1


 5

14


 7


 2


10

15


 3


 3


 7

16


 4


 4


 5

17


 8


 5


 8

18


 5


 6


 8

19


 3


 7


 8

20


 6


 8


 5

21


10


 9


 7

22


 1


10


 7

23


 6


11


10

24


 5


12


 6

25


 4


13


 6

Table 3.  Number of Defective Parts per Day
The C chart
, which appears on the next page, shows that the process appears to be stable. In particular, there are no values outside the control limits, nor does there appear to be any systematic pattern in the data.  (Note:  no reference made to sample size.)

.


Figure 6.  Count Control Chart
Conclusion

In our discussion of control charts we first discussed the common attributes of different control charts available (center line, upper control limit and lower control limit) and focused on what one looks for in trying to detect sources of specific variation (outliers, trends, oscillating, seasonality, etc.).  We then looked at some of the most commonly used control charts in practice, namely the X-bar and R, P, and C control charts.

What differentiates the various control charts is the statistic that is being plotted.  Since different types of data can produce different types of statistics it is clear that the type of data available will suggest the type of statistic that can be calculated and hence the appropriate control chart.

One final but important point is that the control charts generated, including those in this write up, frequently use the data set being examined to construct centerline and control limits (upper and lower).  The problem this may cause is that if the process is unstable then the data it generates may alter the components of the control chart (different centerlines and different control limits) and hence be unable to detect problems that may exist.  For this reason, in practice, when a process is believed to be stable the resulting statistics are frequently used to establish the control limits (center, upper, and lower) for future windows.  What we mean by window is that if we decide to monitor say 30 subgroups at a time, as time evolves subgroups are added and consequently the same number are dropped from the other end, hence a revolving window. Useful software, such as StatGraphics, will allow one to specify the limits as an option.

In summary:

· X-bar and Range charts are used when sample subgroups are of equal size, sample subgroups are taken at equal time intervals, and the subgroup means and range of highest and lowest values are of interest.  

· Proportion charts are used when samples are of equal size and the defect proportions are of interest.

· Count charts are used when either the sample size is unknown or the sample sizes are not uniform. 
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TRANSFORMATIONS & RANDOM WALK

In the previous chapter we focused our attention on viewing variability as being comprised of two parts, common variation and specific variation.  With the exception of manufacturing systems, most economic variables when viewed in their measured formats demonstrate sources of specific variation.  In data analysis, whether we are trying to forecast or explain economic relationships, our goal is to model those sources of specific variation with the result being that only common variation is “left over.”  This can be depicted by the expression:

   ACTUAL = FITTED + ERROR. 

Where the FITTED values are generated from the model (specific variation), the ACTUAL values are the observed values and the ERROR values represent the differences and are a function of common sources of variation.  If the common sources of variation of the model appear to be random, the model may better predict future outcomes as well as providing a more thorough understanding of how the process works.

Random Walk
One of the simplest, yet widely used models in the area of finance is the random walk model.  A common and serious departure from random behavior is called a random walk.  By definition, a series is said to follow a random walk if the first differences are random.  What is meant by first differences is the difference from one observation to the next, which if you think about as the steps of a process and the sequence of steps as a walk, suggest the name random walk.  (Do not be mislead by the term “random” in “random walk.”  A random walk is not random.)  Relating this back to the equation we see that the ACTUAL values are the observed values for the current time period, while the FITTED values are the last periods observed values.

Hence we can write the equation as: 

 Xt  = Xt-1 + et


where:
Xt   is the value in time period t,



Xt-1 is the value in time period t-1 (1 time period before)



et    is the value of the error term in time period t.

Since the random walk was defined in terms of first differences, it may be easier to see the model expressed as:

Xt - Xt-1 = et

Therefore, as one can see from the resulting equation, the series itself is not random.  However, when we take the first differences the result is a transformed series  Xt - Xt-1,  which is random.

To illustrate the random walk model, we consider the series of stock prices for Nike as it was posted on the New York Stock Exchange at the end of each month, from May 1995 to May 2000.  The time sequence plot of the series Nike (see data file) is shown in the figure below.
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Figure 1.  Times Sequence Plot of Nike

As one can see the original series for Nike does not appear to be random.  In fact, when the nonparametric runs test is performed on the original series, the p-value is 0.000020, which indicates compelling evidence to reject the null hypothesis.  Hence, the original series of Nike is not random.





H0:  The [original] series is random





H1:  The [original] series is not random

Now consider the first differences of Nike with the time series plot shown below:
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Figure 2.  First Differences of Nike 

As we can see from the time series plot, by taking first differences the transformed series appears to be random.  (Note that we are only discussing whether the series is random, nothing is being said about it being stable since the variance increases with time.)  To confirm our visual conclusion that the differenced series is random, we perform the runs test and find out that the p-value is 0.7191.  

The p-value exceeds ( = 0.05 and thus provides supporting evidence to retain the null hypothesis, 

the differenced series is random, and thus the stock price of Nike tends to follow a random walk model.





H0:  The (first differenced) series is random





H1:  The (first differenced) series is not random

Information is not lost by differencing.  In fact, use of differencing, or inspecting changes, is a very useful technique for examining the behavior of meandering time series.  Stock market data generally follows a random walk and by differencing, we are able to get a simpler view of the process. 

[image: image10.png]

MODEL BUILDING
Building a statistical model is an iterative process as depicted in the following flowchart:



As one can see, when constructing a statistical model for use there are three phases that must be followed.  In fact most models used in practice require going through the three phases multiple times, as seldom is the model builder satisfied without refining the initial model at least once.

Each of these phases is discussed below in general terms, for all statistical models, and later will be described in detail for specific models (regression, time series, etc.)

Specification
The specification or identification phase involves answering two questions:



1. What variables are involved?

and


2. What is the mathematical relationship between variables?

When establishing a mathematical model there are parameters involved which are unknown to the practitioner.  These parameters need to be estimated, hence, the need for the estimation phase which is discussed in the next section.  When answering the questions above, it is essential that the model builder use economic theory to help establish a tentative model.  A model that is based upon theory has a much better chance of being useful than one based upon guesswork.

Estimation
As mentioned previously, the models developed in the specification phase possess parameters that need to be estimated.  To obtain these estimates, one gathers data and then determines the estimates that best fit the data.  In order to obtain these estimates, one has to establish a criterion that can be used to ascertain whether one set of estimates is “better” than another set.  The most commonly used criterion is referred to as the least squares criterion which, in simple English, means that the error terms which represent the differences between the actual and fitted values, when squared and added up will be minimized.  The reason for using the squared terms is so that the positive and negative residuals do not cancel each other out.  For our purposes, it will suffice to state that the computer will generate these values for us by using StatGraphics Plus.

Diagnostic Checking
The third phase is called the diagnostic checking phase and basically involves answering the question:



Is the model adequate?

If the answer to the above question is no, then something about the model needs modification and the builder returns to the specification phase and goes through the entire three phase process again.  If the answer to the above question is yes, then the model is ready to use.

When in the process of discerning whether the model is adequate, a number of attributes about the model need to be considered:

1. How well does the model fit the data?

2. Do the residuals (actual - fitted) from the model contain any information that should be incorporated into the model? (i.e. is there information in the data that has been ignored in the creation of the model.)

3. Does the model contain variables that are useless and hence should be eliminated from the model?

4. Are the estimates derived from the estimation phase influenced disproportionately by certain observations (data)?

5. Does the model make economic sense?

6. Does the model produce valid results?

As stated previously, when the model builder is able to answer affirmatively to each of the above questions, and only then, are they able to use the model for their desired purpose.
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REGRESSION ANALYSIS
In our discussion of regression analysis, we will first focus our discussion on simple linear regression and then expand to multiple linear regression.  The reason for this ordering is not because simple linear regression is so simple, but because we can illustrate our discussion about simple linear regression in two dimensions and once the reader has a good understanding of simple linear regression, the extension to multiple regression will be facilitated.  It is important for the reader to understand that simple linear regression is a special case of multiple linear regression.  Regression models are frequently used for making statistical predictions -- this will be addressed at the end of this chapter.

Simple Linear Regression
Simple linear regression analysis is used when one wants to explain and/or forecast the variation in a variable as a function of another variable.  To simplify, suppose you have a variable that exhibits variable behavior, i.e. it fluctuates.  If there is another variable that helps explain (or drive) the variation, then regression analysis could be utilized.

An Example
Suppose you are a manager for the Pinkham family, which distributes a product whose sales volume varies from year to year, and you wish to forecast the next years’ sales volume.  Using your knowledge of the company and the fact that its marketing efforts focus mainly on advertising, you theorize that sales might be a linear function of advertising and other outside factors.  Hence, the model’s mathematical function is:

SALESt = B0 + B1 ADVERTt + Error

Where:

SALESt

represents Sales Volume in year t



ADVERTt
represents advertising expenditures in year t



B0 and B1
are constants (fixed numbers)



and Errort
is the difference between the actual sales volume





value in year t and the fitted sales volume value in year t

Note:
the Errort term can account for influences on sales volume other than advertising.

Ignoring the error term one can clearly see that what is being proposed is a linear equation (straight line) where the SALESt value depends on the value of ADVERTt.  Hence, we refer to SALESt as the dependent variable and ADVERTt as the explanatory variable.

To see if the proposed linear relationship seems appropriate we gather some data and plot the data to see if a linear relationship seems appropriate.  The data collected is yearly, from 1907 - 1960, hence, 54 observations.  That is for each year we have a value for sales volume and a value for advertising expenditures, which means we have 54 pairs of data.



Year


Advert



Sales



1907


608



1016



1908


451



921



  .


 .



 .



  .


 .



 .



  .


 .



 .



  .


 .



 .



1959


644



1387



1960


564



1289

To get a feel for the data, we plot (called a scatter plot) the data as is shown as Figure 1.  (Hereafter, the scatter plot will be called plot.)

















Figure 1.   Scatter Plot of Sales vs. Advertising

As can be seen, there appears to be a fairly good linear relationship between sales (SALES) and advertising (ADVERT) (at least for advertising less than 1200  ~ note scaling factor for ADVERT x 1000).  At this point, we are now ready to conclude the specification phase and move on to the estimation phase where we estimate the best fitting line.

Summary:  For a simple linear regression model, the functional relationship is:   Yt = B0 + B1 Xt + Et and for our example the dependent variable Yt is SALESt and the explanatory variable is ADVERTt.  We suggested our proposed model in the example based upon theory and confirmed it via a visual inspection of the scatter plot for SALESt and ADVERTt.  Note:  In interpreting the model we are saying that SALES depends upon ADVERT in the same time period and some other influences, which are accounted for by the ERROR term.

Estimation  
[image: image1.png]We utilize the computer to perform the estimation phase.  In particular, the computer will calculate the “best” fitting line, which means it will calculate the estimates for B0 and B1.  The results are

Table 1.
Since B0 is the intercept term and B1 represents the slope we can see that the fitted line is:

SALESt = 488.8 + 1.4 ADVERTt
The rest of the information presented in Table 1 can be used in the diagnostic checking phase that we discuss next.

Diagnostic Checking  
Once again the purpose of the diagnostic checking phase is to evaluate the model’s adequacy.  To do so, at this time we will restrict our analysis to just a few pieces of information in Table 1.

First of all, to see how well the estimated model fits the observed data, we examine the R-squared (R2) value, which is commonly referred to as the coefficient of determination.  The R2 value denotes the amount of variation in the dependent variable that is explained by the fitted model.  Hence, for our example, 71.09 percent of the variation in SALES is explained by our fitted model.  Another way of viewing the same thing is that the fitted model does not explain 28.91 percent of the variation in SALES.

A second question we are able to address is whether the explanatory variable, ADVERTt, is a significant contributor to the model in explaining the dependent variable, SALESt.  Thus, for our example, we ask whether ADVERTt is a significant contributor to our model in terms of explaining SALESt.  The mathematical test of this question can be denoted by the hypothesis:

H0 : (1 = 0

H1 : (1 ( 0

which makes sense, given the previous statements, when one remembers that the model we proposed is:



SALESt = B0 + B1 ADVERTt + ERRORt
Note:
If B1 = 0, (i.e. the null hypothesis is true), then changes in ADVERTt will not produce a change in SALESt.  From Table 1, we note that the p-value (probability level) for the hypothesis test, which resides on the line labeled slope, is 0.00000 (truncation).  Since the p-value is less than ( =. 05, we reject the null hypothesis and conclude that ADVERTt is a significant explanatory variable for the model, where SALESt is the dependent variable.

An Example 
To further illustrate the topic of simple linear regression and the model building process, we consider another model using the same data set.  However, instead of using advertising to explain the variation in sales, we hypothesize that a good explanatory variable is to use sales lagged one year.  Recall that our time series data is in yearly intervals, hence, what we are proposing is a model where the value of sales is explained by its amount one time period (year) ago.  This may not make as much theoretical sense [to many] as the previous model we considered, but when one considers that it is common in business for variables to run in cycles, it can be seen to be a valid possibility.
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Figure 2.   Plot of Sales vs. Lag(Sales,1)



Looking at Figure 2 as shown above, one can see that there appears to be a linear relationship between sales and sales one time period before.  Thus the model being specified is:

SALESt = B0 + B1 SALESt-1 + Errort
Where:  SALESt 
represents sales volume in year t


SALESt-1
represents sales volume in year t-1


B0 and B1 
are constants (fixed numbers)


and Errort
is the difference between the actual sales volume value in year t and the fitted sales 


volume value in year t

Estimation  

Using the computer, (StatGraphics software), we are able to estimate the parameters B0 and B1 as is shown in Table 2.

[image: image18.wmf]Regression Results for price

------------------------------------------------------------------------------------------------------

                Fitted     Stnd. Error  Lower 95.0% CL  Upper 95.0% CL  Lower 95.0% CL  Upper 95.0% CL

Row              Value    for Forecast    for Forecast    for Forecast        for Mean        for Mean

------------------------------------------------------------------------------------------------------

    51         57.4014          9.1313          39.021         75.7818         52.6282         62.1746

------------------------------------------------------------------------------------------------------


hence, the fitted model is:

SALESt = 148.30 + 0.92 SALESt-1
Diagnostic Checking  
In evaluating the attributes of this estimated model, we can see where we are now able to fit the variation in sales better, as R2, the amount of explained variation in sales, has increased from 71.09 percent to 86.60 percent.  Also, as one probably expects, the test of whether SALESt-1 does not have a significant linear relationship with SALESt is rejected.  That is, the p-value for 





H0:  (1 = 0

 



H1:  (1 ( 0

 is less than alpha (.00000 < .05).  There are other diagnostic checks that can be performed but we will postpone those discussions until we consider multiple linear regression.  Remember: simple linear regression is a specific case of multiple linear regression.

Update
At this point, we have specified, estimated and diagnostically checked (evaluated) two simple linear regression models.  Depending upon one’s objective, either model may be utilized for explanatory or forecasting purposes.

Using Model
As discussed previously, the end result of regression analysis is to be able to explain the variation of sales and/or to forecast value of SALESt.  We have now discussed how both of these end results can be achieved.

Explanation
As suggested by Table 1 and 2, when estimating the simple linear regression models, one is calculating estimates for the intercept and slope of the fitted line (B0 and B1 respectively).  The interpretation associated with the slope (B1) is that for a unit change in the explanatory variable it represents the respective change in the dependent variable along the forecasted line.  Of course, this interpretation only holds in the area where the model has been fitted to the data.  Thus usual interpretation for the intercept is that it represents the fitted value of the dependent variable when the independent (explanatory) variable takes on a value of zero.  This is correct only when one has used data for the explanatory variable that includes zero.  When one does not use values of the explanatory variable near zero, to estimate the model, then it does not make sense to even attempt to interpret the intercept of the fitted line.

Referring back to our examples, neither data set examined values for the explanatory variables (ADVERTt and SALESt-1) near zero, hence we do not even attempt to give an economic interpretation to the intercepts.  With regards to the model:

SALESt = 488.83 + 1.43 ADVERTt
the interpretation of the estimated slope is that a unit change in ADVERT ($1,000) will generate, on the average, a change of 1.43 units in SALESt ($1,000).  For instance, when ADVERTt increases (decreases) by $1,000 the average effect on SALESt will be an increase (decrease) of $1,430.  One caveat, this interpretation is only valid over the range of values considered for ADVERT, which is the range from 339 to 1941 (i.e., minimum and maximum values of ADVERT).

Forecasting
Calculating the point estimate with a linear regression is a very simple process.  All one needs to do is substitute the specific value of the explanatory variable, which is being forecasted, into the fitted model and the output is the point estimate.

For example, referring back to the model:

SALESt  =  488.8 + 1.4 ADVERTt
if one wishes to forecast a point estimate for a time period when ADVERT will be 1200 then the point estimate is:

2168.8  =  488.8 + 1.4 (1200)

Deriving a point estimate is useful, but managers usually find more information in confidence intervals.  For regression models, there are two sets of confidence intervals for point forecasts that are of use as shown in Figure 3 on the next page.






Figure 3. Regression of Sales on Advertising     

Viewing Figure 3 as shown
, one can see two sets of dotted lines, each set being symmetric about the fitted line.  The inner set represents the limits (upper and lower) for the mean response for a given input, while the other set represents the limits of an individual response for a given input.  It is the outer set that most managers are concerned with, since it represents the limits for an individual value.  For right now, it suffices to have an intuitive idea of what the confidence limits represent and graphically what they look like.  So for an ADVERT value of 1200 (input), one can visually see that the limits are approximately 1500 and 2900.  (The values are actually 1511 and 2909.)  Hence, when advertising is $1,200 for a time period (ADVERTt = 1,200) then we are 95 percent confident that sales volume (SALESt) will be between approximately 1,500 and 2,900.

MARKET MODEL - Stock Beta’s

An important application of simple linear regression, from business, is used to calculate the ß of a stock
.  The ß’s are measures of risk and used by portfolio managers when selecting stocks.

The model used (specified) to calculate a stock ß is:

Rj,t = ( + ( Rm,t + (t
Where:

Rj,t 
is the rate of return for the jth stock in time periodt


Rm,t
is the market rate of return in time periodt


(t
is the error term in time periodt


( and ( are constants
To illustrate the above model, we will use data that resides in the data file SLR.SF3.  In particular, we will calculate (‘s for Anheuser Busch Corporation, the Boeing Corporation, and American Express using the New York Stock Exchange (NYSE - Finance) as the “market” portfolio.  The data in the file SLR.SF3 has already been converted from monthly values of the individual stock prices and dividends to represent the monthly rate of returns (starting with June 1995).

For all three stocks, the model being specified and estimated follows the form stated in the equation shown above, the individual stocks rate of returns will be used as the dependent variable and the NYSE rate of returns will be used as the independent variable.

1. Anheuser Busch Co.  (AnBushr)
Using the equation, the model we specify is AnBushRt = ( + ( DJIAVGRt + (t. 
The estimation results are shown below in Table 3:


[image: image14.wmf]Regression Analysis - Linear model: Y = a + b*X

-----------------------------------------------------------------------------

Dependent variable: ROR Anheuser

Independent variable: DJIAVGR

-----------------------------------------------------------------------------

                               Standard          T

Parameter       Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

Intercept      0.0122761     0.00738469        1.66238         0.1018

Slope           0.411569       0.153443        2.68223         0.0095

-----------------------------------------------------------------------------





                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                    0.021278      1     0.021278       7.19       0.0095

Residual                 0.171541     58   0.00295761

-----------------------------------------------------------------------------

Total (Corr.)            0.192819     59



Correlation Coefficient = 0.332193

R-squared = 11.0352 percent

Standard Error of Est. = 0.0543839


Table 3

As shown in the estimation results, the estimated ( for Anheuser Busch Co. is 0.411.  Note that with a p-value of 0.00254, the coefficient of determination, R-squared, is only 11.04 percent, which indicates a poor fit of the data.  However, at this point we only wish to focus on the estimated (.

2. The Boeing Co.
The model we specify, using equation (1) is BoeingRt = ( + (  DJIAVGRt + (t

The results appear below in Table 4.


[image: image15.wmf]Regression Analysis - Linear model: Y = a + b*X

-----------------------------------------------------------------------------

Dependent variable: ROR Boeing

Independent variable: DJIAVGR

-----------------------------------------------------------------------------

                               Standard          T

Parameter       Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

Intercept    -0.00894732     0.00840995        -1.0639         0.2918

Slope            1.08754       0.174746        6.22357         0.0000

-----------------------------------------------------------------------------





                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                    0.148573      1     0.148573      38.73       0.0000

Residual                  0.22248     58   0.00383585

-----------------------------------------------------------------------------

Total (Corr.)            0.371053     59



Correlation Coefficient = 0.63278

R-squared = 40.041 percent

Standard Error of Est. = 0.0619343


Table 4

Note that the estimated ( for The Boeing Co. is 1.08 while the R2 value is 40.04percent.

3.
American Express
The model we specify, using the equation is as follows:

AmExpRt = ( + ( DJIAVGRt + (t
which can be estimated using StatGraphics
The results appear in Table 5:


[image: image16.wmf]Regression Analysis - Linear model: Y = a + b*X

-----------------------------------------------------------------------------

Dependent variable: ROR Amer Express

Independent variable: DJIAVGR

-----------------------------------------------------------------------------

                               Standard          T

Parameter       Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

Intercept     0.00844987     0.00672318        1.25683         0.2139

Slope            1.39088       0.139698        9.95637         0.0000

-----------------------------------------------------------------------------





                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                    0.243012      1     0.243012      99.13       0.0000

Residual                 0.142185     58   0.00245146

-----------------------------------------------------------------------------

Total (Corr.)            0.385197     59



Correlation Coefficient = 0.794278

R-squared = 63.0877 percent

Standard Error of Est. = 0.0495123


Table 5

The estimation results indicate that the ( is 1.39, with an R-squared value of 63.09 percent.

Summary

Using monthly values from June 1995 to June 2000, we utilized simple linear regression to estimate the (‘s of Anheuser Busch Co. (0.411), the Boeing Co. (1.09), and American Express (1.39).  Note that the closer the (‘s are to 1.0, the closer the stocks move with the market.  What does that imply about Anheuser Busch Corporation, the Boeing Corporation, and American Express?

The risk contribution to a portfolio of an individual stock is measured by the stock’s beta coefficient.  Analysts review the market outlooks - if the outlook suggests a market decline, stocks with large positive coefficients might be sold short.  Of course, the historical measure of ( must persist at approximately the same level during the forecast period.  (Additional discussion about stock betas appears in the Appendix.)

Multiple Linear Regression

Referring back to the Pinkham data, suppose you decided that ADVERTt contained information about SALESt that lagged value of SALESt (i.e. SALESt-1) did not, and vice versa, and that you wished to regress SALESt on both ADVERTt and SALESt-1; the solution would be to use a multiple regression model.  Hence, we need to generalize our discussion of simple linear regression models by now allowing for more than one explanatory variable, hence the name multiple regression.  [Note:  more than one explanatory variable, hence we are not limited to just two explanatory variables.]

Specification: Going back to our example, if we specify a multiple linear regression model where SALESt is again the dependent variable and ADVERTt and SALESt-1 are the explanatory variables, then the model is:

SALESt = B0 + B1 ADVERTt + B2 SALESt-1 + ERRORt

where:

B0, B1, and B2 are parameters (coefficients).

Estimation:  To obtain estimates for B0, B1, and B2 via StatGraphics, the criterion of least squares still applies, the mathematics employed involves using matrix algebra.  It suffices for the student to understand what the computer is doing on an intuitive level; i.e. the best fitting line is being generated.  The results from the estimation phase are shown in Table 7.
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-----------------------------------------------------------------------------

Dependent variable: price

-----------------------------------------------------------------------------

                                       Standard          T

Parameter               Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

CONSTANT                -42.6274        9.50374       -4.48533         0.0000

sqft                     3.02471       0.296349        10.2066         0.0000

bath                    -10.0432        3.49189       -2.87614         0.0061

total                    10.7836        2.06048        5.23351         0.0000

-----------------------------------------------------------------------------



                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                     30780.2      3      10260.1     131.95       0.0000

Residual                  3576.84     46      77.7575

-----------------------------------------------------------------------------

Total (Corr.)             34357.0     49



R-squared = 89.5892 percent

R-squared (adjusted for d.f.) = 88.9102 percent

Standard Error of Est. = 8.81802

Mean absolute error = 5.89115

Durbin-Watson statistic = 1.53269




Table 7

Diagnostic Checking
We still utilize the diagnostic checks we discussed for simple linear regression.  We are now going to expand that list and include additional diagnostic checks, some require more than one explanatory variable but most also pertain to simple linear regression.  We waited to introduce some of the checks [that also pertain to simple linear regression] because we didn’t want to introduce too much at one time and most of the corrective measures involve knowledge of multiple regression as an alternative model.

The first diagnostic we consider involves focusing on whether any of the explanatory variables should be removed from the model.  To make these decision(s) we test whether the coefficient associated with each variable is significantly different from zero, i.e. for the ith explanatory variable:

H0: (i = 0

H1: (i ( 0

As discussed in simple linear regression this involves a t-test.  Looking at Table 7, the p-value for the tests associated with determining the significance for SALESt-1 and ADVERT1 are 0.0000 and 0.0397, respectively, we can ascertain that neither explanatory variable should be eliminated from the model.  If one of the explanatory variables had a p-value greater than ( =. 05, then we would designate that variable as a candidate for deletion from the model and go back to the specification phase.

Another attribute of the model we are interested in is the R2 adjusted value that in Table 7 is 0.8721, or 87.21 percent.  Since we are now considering multiple linear regression models, the R2 value that we calculate represents the amount of variation in the dependent variable (SALESt) that is explained by the fitted model, which includes all of the explanatory variables jointly (ADVERTt and SALESt-1).  At this point we choose to ignore the adjusted (ADJ) factor included in the printout.

Since we have already asked the question if anything should be deleted from the model the next question that should be asked if there is anything that is missing from the model, i.e. should we add anything to the model.  To answer this question we should use theory but from an empirical perspective we look at the residuals to see if they have a pattern, which as we discussed previously would imply there is information.  If we find missing information for the model (i.e. a pattern in the residuals), then we go back to the specification phase, incorporate that information into the model and then cycle through the 3 phase process again, with the revised model.  We will illustrate this in greater detail in our next example.  However, the process involved is very similar to that which we employed earlier in the semester.  We illustrate the residual analysis with a new example.

Example

The purpose behind looking at this example is to allow us to work with some cross sectional data and also to look in greater detail at analyzing the residuals.  The data set contains three variables that have been recorded by a firm that presents seminars.  Each record focuses on a seminar with the fields representing:

· number of people enrolled (ENROLL)

· number of mailings sent out (MAIL)

· lead time (in weeks) of 1st mailing (LEAD)

The theory being suggested is that the variation in the number of enrollments is an approximate linear function of the number of mailings and the lead-time.  As recommended earlier, we look at the scatter plots of the data to see if our assumptions seem valid.  Since we are working with two explanatory variables, a three dimensional plot would be required to see all three variables simultaneously, which can be done in StatGraphics with the PLOTTING FUNCTIONS, X-Y-Z LINE and SCATTER PLOT
 options (note the dependent variable is usually Z).  See Figure 7 for this plot.
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-----------------------------------------------------------------------------

Dependent variable: price

-----------------------------------------------------------------------------

                                       Standard          T

Parameter               Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

CONSTANT                -42.6274        9.50374       -4.48533         0.0000

sqft                     3.02471       0.296349        10.2066         0.0000

bath                    -10.0432        3.49189       -2.87614         0.0061

total                    10.7836        2.06048        5.23351         0.0000

-----------------------------------------------------------------------------



                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                     30780.2      3      10260.1     131.95       0.0000

Residual                  3576.84     46      77.7575

-----------------------------------------------------------------------------

Total (Corr.)             34357.0     49



R-squared = 89.5892 percent

R-squared (adjusted for d.f.) = 88.9102 percent

Standard Error of Est. = 8.81802

Mean absolute error = 5.89115

Durbin-Watson statistic = 1.53269

















Figure 7.    Plot of Enroll vs. Mail & Lead

This plot provides some insight, but for beginners, it is usually more beneficial to view multiple two-dimensional plots where the dependent variable ENROLL is plotted against the different explanatory variables, as is shown in Figures 8 and 9.

[image: image21.wmf]               Influential Points

------------------------------------------------

                       Mahalanobis

Row         Leverage      Distance         DFITS

------------------------------------------------

     8     0.0816156       3.28611      0.560007

    42      0.144802       7.14775       0.58652

    49     0.0947427       4.04401       1.62728

    50      0.339383       23.6798     0.0932134

------------------------------------------------

Average leverage of single data point = 0.06


Figure 8.   Plot of Enroll vs. Mail

[image: image22.wmf]                        Unusual Residuals

--------------------------------------------------------------

                         Predicted                 Studentized

Row                Y             Y      Residual      Residual

--------------------------------------------------------------

    44         111.3        85.482        25.818          2.73

    47         115.2       92.1828       23.0172          2.40

    49         129.0       89.2508       39.7492          5.03

--------------------------------------------------------------


Figure 9.   Plot of Enroll vs. Lead
Looking at Figure 9, which plots ENROLL against LEAD, we notice that there is a dip for the largest LEAD values which may economically suggest diminishing returns i.e. at a point the larger lead time is counterproductive.  This suggest that ENROLL and LEAD may have a parabolic relationship.  Since the general equation of a parabola is:
y = ax2 + bx + c

we may want to consider including a squared term of  LEAD in the model.  However, at this point we are not going to do so, with the strategy that if it is needed, we will see that when we examine the residuals, as we would have ignored some information in the data and it will surface when we analyze the residuals.  (In other words we wish to show that if a term should be included in a model, but is not identified, one should be able to identify it as missing when examining the residuals of a model estimated without it.)

Specification  
Thus the model we tentatively specify is:

ENROLLi = B0 + B1 MAILi + B2 Leadi + ERRORi
[image: image23.wmf]Multiple Regression Analysis

-----------------------------------------------------------------------------

Dependent variable: price

-----------------------------------------------------------------------------

                                       Standard          T

Parameter               Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

CONSTANT                -15.4038        7.34394       -2.09749         0.0414

sqft                     3.52674       0.269104        13.1055         0.0000

bed                      7.64828        2.78697         2.7443         0.0086

-----------------------------------------------------------------------------



                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                     29438.5      2      14719.3     140.65       0.0000

Residual                  4918.52     47      104.649

-----------------------------------------------------------------------------

Total (Corr.)             34357.0     49



R-squared = 85.6841 percent

R-squared (adjusted for d.f.) = 85.0749 percent

Standard Error of Est. = 10.2298

Mean absolute error = 7.19612

Durbin-Watson statistic = 1.682



Estimation 





Table 8

Note that MAIL and LEAD are both significant, since their p-values are 0.0000 and 0.0008, respectively.  Hence, there is no need at this time to eliminate either from the model.  Also, note that R2adj  is 79.96 percent.  

To see if there is anything that should be added to the model, we analyze the residuals to see if they contain any information.  Utilizing the graphics options icon, one can obtain a plot of the standardized residuals versus lead (select residuals versus X).  Plotting against the predicted values is similar to looking for departures from the fitted line.  For our example since we entertained the idea of some curvature (parabola) when plotting ENROLL against LEAD, we now plot the residuals against LEAD.  This plot is shown as Figure 10.

[image: image24.wmf]Multiple Regression Analysis

-----------------------------------------------------------------------------

Dependent variable: enroll

-----------------------------------------------------------------------------

                                       Standard          T

Parameter               Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

CONSTANT                0.226184        2.89795      0.0780495         0.9384

lead                     4.50131       0.675669        6.66201         0.0000

mail                    0.645073       0.189375        3.40633         0.0022

lead * lead            -0.132796       0.022852       -5.81115         0.0000

-----------------------------------------------------------------------------



                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                     2246.12      3      748.707      96.96       0.0000

Residual                  193.053     25      7.72211

-----------------------------------------------------------------------------

Total (Corr.)             2439.17     28



R-squared = 92.0853 percent

R-squared (adjusted for d.f.) = 91.1356 percent

Standard Error of Est. = 2.77887

Mean absolute error = 2.081

Durbin-Watson statistic = 1.121




Figure 10.   Residual Plot for Enroll against Lead
What we are looking for in the plot is whether there is any information in LEAD that is missing from the fitted model.  If one sees the curvature that still exists, then it suggests that one needs to add another variable, actually a transformation of LEAD, to the model.  Hence we go back to the specification phase, based upon the information just discovered, and specify the model as:

ENROLLi = B0 + B1 MAILi + B2 Lead + B3 (LEAD)2i + ERRORi
The estimation of the revised model generates the output presented in Table 9.
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Table 9

Diagnostic Checking  

At this point we go through the diagnostic checking phase again.  Note that all three explanatory variables are significant and that the R2adj value has increased to 91.13 percent from 79.96 percent.  For our purposes at this point, we are going to stop our discussion of this example, although the reader should be aware that the diagnostic checking phase has not been completed.  Residual plots should be examined again, and other diagnostic checks we still need to discuss should be considered.

Before we proceed however, it should be pointed out that the last model is still a multiple linear regression model.  Many students think that by including the squared term, to incorporate the curvature, that we may have violated the linearity condition.  This is not the case, as when we say “linear” it is linear with regards to the coefficients.  An intuitive explanation of this is to think like the computer, all LEAD2 represents is the squared values of LEAD, therefore, the calculations are the same as if LEAD2 was another explanatory variable.

The next three multiple regression topics we discuss will be illustrated with the data that was part of a survey conducted of houses in Eugene, Oregon, during the 1970’s.  The variables measured (recorded), for each house, are sales price (price), square feet (sqft), number of bedrooms (bed), number of bathrooms (bath), total number of rooms (total), age in years (age), whether the house has an attached garage (attach), and whether the house has a nice view (view).

Dummy Variables
Prior to this current example, all the regression variables we have considered have been either ratio or interval data, which means they are non-qualitative variables.  However, we now want to incorporate qualitative variables into our analysis.  To do this we create dummy variables, which are binary variables that take on values of either zero or one.  Hence, the dummy variable (attach) is defined as:




attach = 
1
if garage is attached to house



   


0
otherwise (i.e. not attached)


and




view
= 
1
if  house has a nice view



  


0
otherwise

Note that each qualitative attribute (attached garage and view) cited above has two possible outcomes (yes or no) but there is only 1 dummy variable for each.  That is because there must always be, at maximum, one less dummy variable than there are possible outcomes for the  particular qualitative attribute.  We mention this because there are going to be situations, for other examples, where one wants to incorporate a qualitative attribute that has more than two possible outcomes in the analysis.  For example, if one is explaining sales and has quarterly data, they might want to include the season as an explanatory variable.  Since there are four seasons (Fall, Winter, Spring, and Summer) there will be three (four minus one) dummy variables.  To define these three dummy variables, we arbitrarily select one season to “withhold” and create dummy variables for each of the other seasons.  For example, if summer was “withheld” then our three dummy variables could be





D1 = 
1   if Fall



  


0   otherwise





D2 = 
1   if Winter



    


0   otherwise





D3 = 
1   if Spring



   


0   otherwise

Now, what happens when we withhold a season is not that we ignore the season, but the others are being compared with what is being withheld.

Outliers

When an observation has an undue amount of influence on the fitted regression model (coefficients) then it is called an outlier.  Ideally, each observation has an equal amount of influence on the estimation of the fitted lines.  When we have an outlier, the first question one needs to ask is “Why is that observation an outlier?”  The answer to that question will frequently dictate what type of action the model builder should take.

One reason an observation may be an outlier is because of a recording (inputting) error.  For instance, it is easy to mistakenly input an extra zero, transpose two digits, etc.  When this is the cause, then corrective action can clearly be taken.  Don’t always assume the data is correct! Another source is because of some extra ordinary event that we do not expect to occur again.  Or the observation is not part of the population we wish to make interpretation/forecasts about.  In these cases, the observation may be “discarded.”  

If the data is cross-sectional, then the observation may be eliminated, thereby decreasing the number of observations by one.  If the data is times series, by “discarding the impact” of the observation one does not eliminate observations since doing so may effect lagging relationships, however one can set the dummy variable equal to one (1) for that observation, zero (0) otherwise.

At other times, the outcome, which is classified as an outlier, is recorded correctly, may very well occur again, and is indeed part of the concerned population.  In this case, one would probably want to leave the observation in the model construction process.  In fact, if an outlier or set of outliers represents a source of specific variation then one should incorporate that specific variation into the model via an additional variable.  Keep in mind, just because an observation is an outlier does not mean that it should be discarded.  These observations contain information that should not be ignored just so “the model looks better.”

Now that we have defined what an outlier is and what action to take/not take for outlier, the next step is to discuss how to determine what observations are outliers.  Although a number of criteria exist for classifying outliers, we limit our discussion to two specific criteria - standardized residuals and leverage.

The theory behind using standardized residuals is that outliers are equated with observations which have large residuals.  To determine what is large, we standardize the residuals and then use the rule that any standardized residual outside the bounds of -2 to 2 is considered an outlier.  [Why do we use -2 and 2?  Could we use -3 and 3?] 

The theory behind the leverage criteria is that a large residual may not necessarily equate with an outlier.  Hence, the leverage value measures the amount of influence that each observation has on the set of estimates.  It’s not intuitive, but can be shown mathematically, that the sum of the leverage points is equal to the number of B coefficients in the model (P).  Since there are N observations, under ideal conditions each observation should have a leverage value of P/N.  Hence, using our criteria of large being outside two standard deviation, the decision rule for declaring outliers by means of leverage values is to declare an observation as a potential outlier if its leverage value exceeds 2*P/N.  StatGraphics employs a cut off of 3* P/N.

To illustrate, identifying outliers, we estimate the model:

Pricei = B0 + B1 SQFTi + B2 BED + Error

[image: image26.wmf]Multiple Regression Analysis

-----------------------------------------------------------------------------

Dependent variable: enroll

-----------------------------------------------------------------------------

                                       Standard          T

Parameter               Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

CONSTANT                 14.8523         2.1596        6.87733         0.0000

lead                    0.627318       0.165436        3.79191         0.0008

mail                     1.27378       0.233677        5.45103         0.0000

-----------------------------------------------------------------------------



                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                     1985.35      2      992.674      56.87       0.0000

Residual                  453.824     26      17.4548

-----------------------------------------------------------------------------

Total (Corr.)             2439.17     28



R-squared = 81.3943 percent

R-squared (adjusted for d.f.) = 79.9631 percent

Standard Error of Est. = 4.17789

Mean absolute error = 3.33578

Durbin-Watson statistic = 1.03162




Table 10
With the results being shown in Table 10, in our data set of houses, clearly some houses are going to influence the estimate more than others.  Those with undue influences will be classified as potential outliers.  Again, the standardized residuals outside the bounds -2, +2 (i.e. absolute value greater than 2), and the leverage values greater than 3 3/50 (P = 3 since we estimated the coefficient for two (2) explanatory variables and the intercept and n = 50 since there were 50 observations) will be flagged.  After estimating the model we select the "unusual residuals" and "influential points"  options under the tabular options icon. Note that from tables 11 and 12 observations  8, 42, 44, 47, 49 and 50 are classified as outliers.
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Table 11

[image: image28.wmf]Plot of enroll vs mail
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Table 12

Once the outliers are identified one then needs to decide what, if anything, needs to be modified in the data or model.  This involves checking the accuracy of the data and/or determining if the outliers represent a specific source of variation.  To ascertain any sources of specific variation one looks to see if there is anything common in the set, or subset, of observations flagged as outliers.  In Table 11
 one can see that some of the latter observations (42, 44, 47, 49, and 50) were flagged.  Since the data ( n = 50) was entered by ascending price, one can see that the higher priced homes were flagged.  As a result, for this example, the higher priced homes are receiving a large amount of influence.  Hence, since this is cross-sectional data, one might want to split the analysis into two models - one for “lower” priced homes and the second for “higher” priced homes.
Multicollinearity
When selecting a set of explanatory variables for a model, one ideally would like each explanatory variable to provide unique information that is not provided by the other explanatory variable(s).  When explanatory variables provide duplicate information about the dependent variable, then we encounter a situation called multicollinearity.  For example, consider our house data again, where the following model is proposed:

Price = B0 + B1 SQFT + B2 BATH + B3 TOTAL + ERROR
Clearly there is a relationship among the three (3) explanatory variables.  What problems might this create?  To answer this, consider the estimation results, which are shown on the following page.

[image: image29.wmf]Multiple Regression Analysis

-----------------------------------------------------------------------------

Dependent variable: sales

-----------------------------------------------------------------------------

                                       Standard          T

Parameter               Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

CONSTANT                 138.691        95.6602        1.44982         0.1534

lag(sales,1)            0.759307      0.0914561        8.30242         0.0000

advert                  0.328762       0.155672        2.11189         0.0397

-----------------------------------------------------------------------------



                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                   1.80175E7      2    9.00875E6     178.23       0.0000

Residual                2.52722E6     50      50544.3

-----------------------------------------------------------------------------

Total (Corr.)           2.05447E7     52



R-squared = 87.699 percent

R-squared (adjusted for d.f.) = 87.2069 percent

Standard Error of Est. = 224.821

Mean absolute error = 173.307

Durbin-Watson statistic = 0.916542




Table 13

If one were to start interpreting the coefficients individually and noticed that bath has a negative coefficient, they might come to the conclusion that one way to increase the sales price is to eliminate a bathroom.  Of course, this doesn’t make sense, but it does not mean the model is not useful.  After all, when the BATH is altered so are the TOTAL and SQFT.  So a problem with multicollinearity is one of interpretation when other associated changes are not considered.  One important fact to remember, is that just because multicollinearity exists, does not mean the model can not be used for meaningful forecasting, provided the forecasts are within the data region considered for constructing the model.

Predicting Values with Multiple Regression
Regression models are frequently used for making statistical predictions.  A multiple regression model is developed, by the method of least squares, to predict the values of a dependent, response variable based on two or more independent, explanatory variables.

Research data can be classified as cross-sectional data or as time series data. Cross-sectional data has no time dimension, or it is ignored.  Consider collecting data on a group of subjects.  You are interested in their age, weight, height, gender, and whether they tend to be left-handed.  The time dimension in collecting the data is not important and would probably be ignored; even though researchers tend to collect the data within a reasonably short time period.

Time series data is a sequence of observations collected from a process with equally spaced periods of time.  For example, in collecting sales data, the data would be collected weekly with the time (the specific week of the year) and sales being recorded in pairs.

Using Cross-sectional Data for Predictions

When using regression models for making predictions with cross-sectional data, it is imperative that you use only the relevant range of the predictor variable(s).  When predicting the value of the response variable for a given value of the explanatory variable, one may interpolate within the range of the explanatory variables.  However, contrary to when using time series data, one may not extrapolate beyond the range of the explanatory variables.  (To predict beyond the range of an explanatory variable is to assume that the relationship continues to hold true below and/or above the range -- something that is not known nor can it be determined.  To make such an interpretation is meaningless and, at best, subject to gross error.)

An Example: Using a Regression Model to Predict 

Consider the following research problem - a real estate firm is interested in developing a model to predict, or forecast, the selling price of a home in a local community.  Data was collected on 50 homes in a local community over a three week period.

The data can consist of both qualitative and quantitative values. Quantitative variables are measurable whereas qualitative variables are descriptive.  For example: your height, a quantitative value, is measurable whereas the color of your hair, a qualitative variable, is descriptive.

 For our real estate example, the dependent variable (selling price) and the explanatory variables (square feet, number of bathrooms, and total number of rooms) are all quantitative variables.  None of the data are qualitative variables.

	Table 13.  Variable With Range of Values

	                              Variables
	Range of Values

	                       Price (selling)  ($1000)
	             30.6 - 165

	                       Square feet      (100 ft2)
	                  8 - 40

	                       Number of Bathrooms
	                  1 - 3

	                       Total number of rooms
	                  5 - 12


As a review, the multiple regression model can be expressed as:

Yi = (0 + (1X1 + (2X2 + (3X3 + (i
The slope, (i, known as a net regression coefficient,  represents the unit change in Y per unit change in Xi taking into account (or, holding constant) the effect of the remaining explanatory variables.  In our real estate problem, b1 , where X1 is in square feet, represents the unit change selling price per unit change in square feet, taking into account the effect of number of bedrooms, and total number of rooms.

The resulting model fitting equation is shown in Table 14. 

[image: image30.wmf]Regression Analysis - Linear model: Y = a + b*X

-----------------------------------------------------------------------------

Dependent variable: sales

Independent variable: lag(sales,1)

-----------------------------------------------------------------------------

                               Standard          T

Parameter       Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

Intercept        148.303          98.74        1.50196         0.1393

Slope           0.922186       0.050792        18.1561         0.0000

-----------------------------------------------------------------------------





                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                   1.77921E7      1    1.77921E7     329.64       0.0000

Residual                2.75265E6     51      53973.5

-----------------------------------------------------------------------------

Total (Corr.)           2.05447E7     52



Correlation Coefficient = 0.9306

R-squared = 86.6017 percent

Standard Error of Est. = 232.322


Table 14

Multiple regression analysis is conducted to determine whether the null hypothesis, written as Ho: (i = 0  (with i = 0 - 3), can be rejected. If the null hypothesis can be rejected, then there is sufficient evidence of a relationship (or, an association) between the response variable and the explanatory variables in the sample.  Table 14 also displays the resulting analysis of variance (ANOVA) for the multiple regression model using the explanatory variables listed in Table 12.

 The ANOVA for the full multiple regression shows a p-value equal to 0.0000, thus Ho can be rejected (because the p-value is less than ( of 0.05).  Since the null hypothesis may be rejected, there is sufficient evidence of a relationship (or, an association) between selling price and the three explanatory variables in the sample of 50 houses. 
CAUTION: As stated, when using regression models for making predictions with cross-sectional data, use only the relevant range of the explanatory variable(s). To predict outside the range of an explanatory variable is to assume that the relationship continues to hold true below and/or above the range -- something that is not known nor can be determined. To make such an interpretation is meaningless and, at best, subject to gross error.

Suppose one wishes to obtain a point estimate, along with confidence intervals for both the individual forecasts and the mean, for a home with the following attributes

1500 square feet,  1 bath,  6  total rooms.

To do this using Statgraphics, alls one needs to do is add an additional row of data to the data file (HOUSE.SF).  In particular one would insert a 15 in the sqft column (remember that the square feet units is in 100 's), a 1 in  the bath column and a 6 in the total column.  We leave the other columns blank, especially the price column, since Statgraphics will treat it as a missing value and hence estimate it.  To see the desired output, one runs the regression, using the additional data points, goes to the tabular options icon and selects the "report" option.  Table 15 shows the forecasting results for our example.
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-----------------------------------------------------------------------------

Dependent variable: sales

Independent variable: advert

-----------------------------------------------------------------------------

                               Standard          T

Parameter       Estimate         Error       Statistic        P-Value

-----------------------------------------------------------------------------

Intercept        488.833        127.439        3.83582         0.0003

Slope            1.43459       0.126866        11.3079         0.0000

-----------------------------------------------------------------------------





                           Analysis of Variance

-----------------------------------------------------------------------------

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value

-----------------------------------------------------------------------------

Model                   1.50846E7      1    1.50846E7     127.87       0.0000

Residual                6.13438E6     52     117969.0

-----------------------------------------------------------------------------

Total (Corr.)            2.1219E7     53



Correlation Coefficient = 0.843149

R-squared = 71.0901 percent

Standard Error of Est. = 343.466


Table 15

Summary
In the introduction to this section, cross-sectional data and time series data were defined.  With cross-sectional data, the time dimension in collecting the data is not important and can be ignored; even though researchers tend to collect the data within a reasonably short time period.  When predicting the value of the response variable for a given value of the explanatory variable with cross-sectional data, a researcher is restricted to interpolating within the range of the explanatory variables.  However, a researcher may not extrapolate beyond the range of the explanatory variables because it cannot be assumed that the relationship continues to hold true below and/or above the range since such an assumption cannot be validated.  Cross-sectional forecasting is stationary, it does not change over time.

On the other hand, time series data is a sequence of observations collected from a process with equally spaced periods of time. Contrary to the restrictions placed on cross-sectional data, when using time series data a major purpose of forecasting is to extrapolate beyond the range of the explanatory variables.  Time series forecasting is dynamic, it does change over time.

Practice Problem

As part of your job as personnel manager for a company that produces an industrial product, you have been assigned the task of analyzing the salaries of workers involved  in the production process.  To accomplish this, you have decided to develop the “best” model, utilizing the concept of parsimony, to predict their weekly salaries.  Using the personnel files, you select, based on systematic sampling, a sample of 49 workers involved in the production process.  The data, entered in the file company, corresponds to their weekly salaries, lengths of employment, ages, gender, and job classifications.


a.
 eq \O(y,^)PRIVATE 
  =  _________________________________________________________         


b.
H0:  ______________________           
H1: _______________________


 
p-value: ___________________             Decision: __________________


c.
In the final model, state the value and interpret for R2adj.   R2adj: ________ %


d.
In the final model, state the value and interpret for b1 .      b1 =  ________         



e.
Predict the weekly salaries for the following employees:                                                          

	Category
	Employee #1
	Employee #2

	Length of employment (in months)
	10 
	125

	Age (in years)
	23
	33

	Gender
	female
	male

	Job classification 
	technical
	clerical


	Employee
	95% LCL
	 eq \O(y,^)PRIVATE 
      
	95% UCL

	# 1
	
	
	

	# 2
	
	
	


[Check documentation on file to ascertain gender coding for female and male.  Also check for proper coding for job classification.]
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�    Greek letters usually denotes parameters.

�   The square root of the variance is called a standard deviation.

�   What is the random variable?

�   The sum of all 25 values divided by 25.

�    Referred to frequently in statistical software as a Prob. Level or Sig. Value.

� Recall the binomial distribution where one of the parameters is the probability of success.

� When the sample sizes are different the calculations become more complicated. For our purposes we will just note this and leave the details for the software programmers.

� The notation in the StatGraphics software may confuse you as it relates the C chart option with “count of defects” and the U chart option with “defects per unit”. We are not discussing the U chart in class or this write up. The U chart allows for the “units” to change from subgroup to subgroup.

�   The use of [original] is for emphasis only ... it is not normally used when stating the null hypothesis.

�   Use of [first differenced] for emphasis only.  (See footnote 10.)

� Figure 3 was obtained by selecting Plot of Fitted Line under the Graphical Options icon.

�   For an additional explanation on the concept of stock beta’s, refer to the Appendix. 

� StatGraphics also used two other techniques for identifying outliers (Mahalanobis Distribution and DIFTS), which we have elected not to discuss since from an intuitive level they are similar to the standardized residual/leverage criteria.
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