
Lab 2 Part 1 –
Create a Verilog hardware description for the 7408 AND gate. When this is written, do a
SYNTAX check by compiling this file. IF you get errors, go back and fix them. Usually it’s best to fix the
first error and re-compile. When you get a successful compilation, you then assign pins to the two inputs
and one output. (See the ISE tutorial in this lab manual) You assign the pins according to function. Inputs
of the gates should be assigned a switch, and the output should be assigned an LED. Deciding which
switch and LED is up to you!

Once the pin assignment is done, you move on to downloading your design to the XILINX_64 circuit
board. (Again, see the ISE tutorial in this lab manual) If that is done successfully, you can now TEST your
circuit against the truth table you have prepared for lab. Write down your OBSERVED results next to your
PREDICTED results. Create 3 more files (one file for each remaining gates) using structural Verilog
programming for the 74LS00, 74LS04, and 74LS32. After you have done this, compile, download, and
test each of them as you did the 7408 AND gate. Report your results.

Remember we are only mimicking the function of the 7400 Series TTL gates using Verilog and our
Programmable Logic.

Verilog has built in primitives that can be used to describe a circuit using structural modeling.
The following primitives are for combinational logic circuits.
and, nand, or, nor, xor, xnor, not, buf.
Use four of these primitives to describe four 7400 Series TTL integrated circuits (ICs):

Remember there are 4 independent gates in each integrated circuit (7400 NAND, 7408 AND, 7432 OR)
and 6 independent gates in the 7404 (NOT IC).

Lab 2 Part 1 (continued)

The following Verilog has been written for you. Type these descriptions in the ISE editor, and compile,
download, and test to be sure they follow the truth table correctly. In your lab report, make the truth tables
and logic diagrams for each Verilog Module.

(Note: these modules do not include the output inverter needed for the ACTIVE LOW drive for
the LEDs – see notes from lecture)

module andgate(in1,in2,out); module notgate(in1,out);

input in1,in2; input in1;
output out; output out;

wire in1,in2,out; wire in1, out;

and g1(out,in1,in2); not g1(out,in1);

endmodule endmodule

module orgate(in1,in2,out); module nandgate(in1,in2,out);

input in1,in2; input in1,in2;
output out; output out;

wire in1,in2,out; wire in1,in2,out;

or g1(out,in1,in2); nand g1(out,in1,in2);

endmodule endmodule

* *
Create a single module instead of four
independent modules. This module should
have 2 inputs and 4 outputs. There is an
output for each function.

Lab 2 PART 2

Each circuit below is a two input EXCLUSIVE-OR gate. Recall that an EXCLUSIVE-OR has a high output
if one or the other inputs are high. Write a structural model to implement this function. You can write two
description programs, one for each logic diagram, or combine them into one module.
Compile, download, and test each circuit. In your report, show that each circuit satisfies the truth table for
an EXCLUSIVE-OR function.

Re-draw each circuit for your lab report with the proper names of each internal node and
inputs/outputs (I/O).

module xorgate(x,y,f);

input x,y;
output f;

wire x,y,f;
wire notxout,notyout,and1out,and2out;

or or1(f,and1out,and2out);

and and1(and1out,x,notyout),
and2(and2out,y,notxout);

not notx(notxout,x),
noty(notyout,y);

endmodule

QUESTION #1:
Is there an easier way to write an EXCLUSIVE-OR function still using primitives
and structural modeling? Explain in the conclusion portion of your report.

QUESTION #2:
If you really needed to use EXCLUSIVE-OR gates could you buy a 7400 Series TTL
Integrated Circuit (IC)? If so, what is the TTL part number and explain and draw the pin
out of the device.

LAB 2 Part 3
Consider a circuit with 4 inputs A, B, C, and D and one output F. Input A shall be the most
significant bit. Create a truth table to implement the equation below. Show all the work (Boolean
Algebra) as part of the design to reduce the equation for F. Draw the logic diagram (with names
of internal and external signals) for your final reduced equation. After completing your logic
diagram, write the Verilog description using “Structural Modeling”. Compile, download and test
your design against the truth table you made from the original equation below.

F = /((/C + /D) · (/A + B + /D)) ← (using standard AND OR NOT symbols)

Note: If you wrote the above equation in Verilog HDL using the “dataflow” modeling technique, the
equation would look like this:

F = ~((~C | ~D) & (~A | B | ~D))

LAB 2 Part 4
This exercise is to improve your method of reduction techniques. Use only the four
integrated circuits (ICs) packages: the 7400 (NAND), 7404(NOT), 7408(AND) and
7432(OR), and wire up your design that you created from the Truth Table.

Description:
Consider a circuit with 4 inputs A, B, C, and D and two outputs F1 and F2. Input A shall be the
most significant bit. Design a circuit to implement the given Truth Table. Show all the work (K-
maps, Boolean Algebra, DeMorgan’s) as part of the design to find the final equations for both F1
and F2. Also create the “complete” schematic diagram (and include in your lab report) for the
circuit using the four (or less) integrated circuits (ICs). When you are happy with your design,
wire it up on your white proto board.

Note: Both F1 and F2 must function at the SAME time, so your schematic diagram will have both outputs
and shall be realized with both outputs functioning at the same time. (Hint: Share circuits from each
function)

 Truth Table

 Inputs Outputs
Inputs Outputs
A B C D F1 F2
0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 1 1 1
0 1 1 0 0 1
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 1 0 0

Here is some information about the 7400 Series TTL Integrated Circuits:

Dot near pin 1 or Notch at top center

Top View of a 14 pin 74xx device
Dual In-Line Package (DIP)

 SN 74LS32

