

Announcement:

This weeks experiment (Atomic Spectra/Flame Test) is due next week, even though there is no lab scheduled for the next two weeks.

Monday's Lab must turn in the lab by Tuesday (11/13) Tuesday's Lab must turn in the lab by Tuesday (11/13) Thursday's Lab must turn in the lab by Thursday (11/15)

Late labs will have points deducted.

11/9/07

Dr. Mack. CSUS

2

Making up solutions of *known* concentration: To make "stock" solution of known Distilled water molarity, one must: 1. Add a carefully measured amt. of solute to a *volumetric flask*. Size 500 ml A volumetric flask is a piece of laboratory glassware that is Wash accurately *calibrated* to a Bottle precise know volume at a known temperature. volumetric flask Solute 7 Dr. Mack. C

Making up solutions of *known* concentration:

To make "stock" solution of known molarity, one must:

1. Add a carefully measured amt. of solute to a *volumetric flask*.

2. Fill the volumetric flask partially with the solvent to dissolve the solute.

One must be sure that the solute (if it is in solid form) is completely dissolved before the addition of more solvent.

11/9/07

Dr. Mack. CSUS

8

11/9/07

Making up solutions of *known* concentration:

To make "stock" solution of known molarity, one must:

1. Add a carefully measured amt. of solute to a *volumetric flask*.

2. Fill the volumetric flask partially with the solvent to dissolve the solute.

3. Fill the volumetric to the calibration mark using a bottle, then a dropper.

The bottom of the curved portion of the meniscus must be even with the calibration mark. 11/9/07 Dr. Mack. CSUS

indicates a volume of exactly 250 mL at 25 °C. SUS 9

Making up solutions of known concentration:

Knowing the volume of the flask and the moles of solute, one can determine the molarity of the solution!

11/9/07

A student adds 25.15 g of sodium sulfide into a 500.0mL volumetric flask then fills the solution to the calibration mark with water. What is the molarity of this solution.

molari	$t_{\rm V}({\rm M}) = -$ moles of solute	
motari	L of solution	
g Na ₂ S	\longrightarrow mols Na ₂ S \longrightarrow M(Na ₂ S)	
$M(Na_2S) =$	$\frac{25.15 \text{g Na}_2 \text{S}}{78.05 \text{g Na}_2 \text{S}} = 0.6445 \text{M}$	
	$500.0 \text{mL} \times \frac{1 \text{ L}}{10^3 \text{mL}} \qquad \text{Na}_2 \text{S}$	
11/9/07	Dr. Mack. CSUS 11	

What is the sodium ion concentration of this solution?

$$Na_2S(aq) \longrightarrow 2Na^+(aq) + S^{2-}(aq)$$

When the salt dissolves in solution, 2 moles of sodium ion result for every one mole of the sodium sulfide salt.

$$0.6445M \text{ Na}_2\text{S} \times \frac{2 \text{mol Na}^+}{1 \text{mol Na}_2\text{S}} = 1.289M \text{ Na}^+$$

The concentration of ions depends upon the molar ratios in the salt.

11/9/07

```
Dr. Mack. CSUS
```

13

Suppose one wants to prepare 250.0 mL of a 0.105 M solution of AgNO₃. How would this be done? Volume (L) \times molarity(mol/L) = moles moles \times molar mass = grams

the calibration mark with water. 11/9/07 Dr. Mack. CSUS

15

Solution Stoichiometry:

When solutions mix, a chemical reaction may result. One can calculate the concentrations of products and reactants based on the stoichiometry of the reaction.

Consider solutions of nitric acid and potassium hydroxide:

HNO₃(aq) and KOH(aq) When they mix: acid + base make a salt + water

 $HNO_3(aq) + KOH(aq) \rightarrow KNO_3(aq) + H_2O(l)$

11/9/07

Dr. Mack. CSUS

18

How many mL of 0.125M nitric acid are needed to completely neutralize 25.1mL of 0.105M potassium hydroxide?

$$HNO_3(aq) + KOH(aq) \rightarrow KNO_3(aq) + H_2O(l)$$

mL KOH \rightarrow mols KOH \rightarrow mols HNO₃ \rightarrow mL HNO₃

