

<u>Announcement:</u>

This weeks experiment (Atomic Spectra/Flame Test) is due next week, even though there is no lab scheduled for the next two weeks.

Monday's Lab must turn in the lab by Tuesday (11/13) Tuesday's Lab must turn in the lab by Tuesday (11/13) Thursday's Lab must turn in the lab by Thursday (11/15)

Late labs will have points deducted.

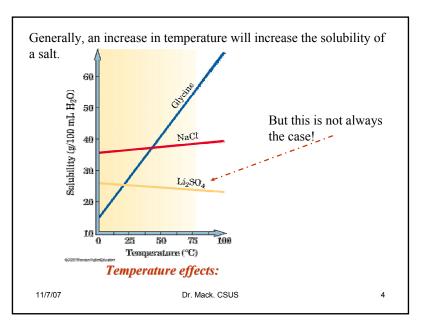
11/7/07

Dr. Mack. CSUS

2

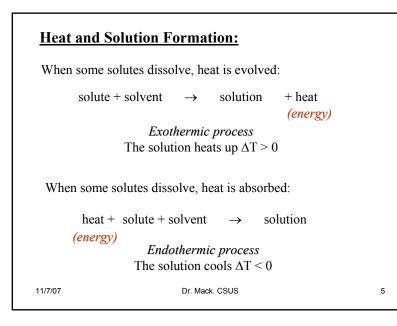
INCREASING THE RATE OF DISSOLVING

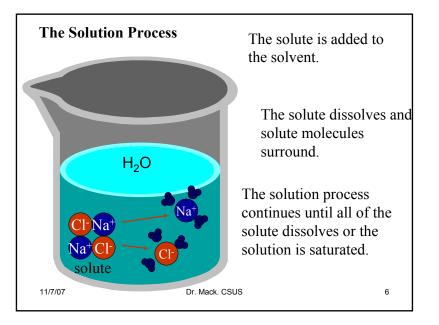
Crush or grind the solute:

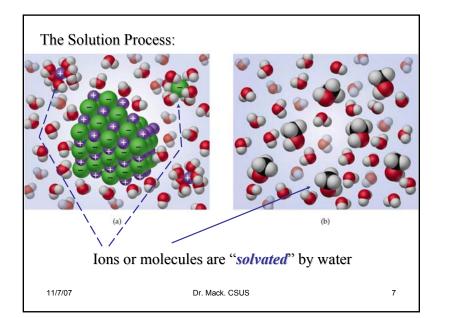

Smaller particles provide for more surface area for solvent interaction, thus increasing the rate of solubility.

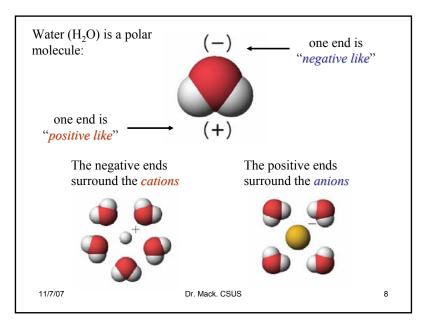
Heat the solvent:

When the solvent molecules move faster, there are more frequent collisions with solute thus increasing the rate of solution.


Stir or agitate the solution:


Stirring removes locally saturated solution from the vicinity of the solute thus allowing unsaturated solvent to take its place.




11/7/07

3

A solute will not dissolve in a solvent if:

(1) the forces between solute particles are too strong to be overcome by interactions with solvent particles.

(2) the solvent particles have a different form of polarity than the solute particles.

A good rule of thumb for solubility is "like dissolves like."

Polar solvents dissolve polar or ionic solutes.

Non-polar solvents dissolve *non-polar* or nonionic solutes.

11/7/07

Dr. Mack. CSUS

9

Solubility of Inorganic Compounds: Rule 1: Compounds containing one of the following cations are likely soluble: Group 1A cations (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) Ammonium ion (NH₄⁺)

Rule 2: Compounds containing one of the following anions are likely soluble:

Nitrate (NO_3^{-}), perchlorate (ClO_4^{-}), acetate ($CH_3CO_2^{-}$)

Between these two rules, one can identify 90–95% of all soluble salts.

11/7/07

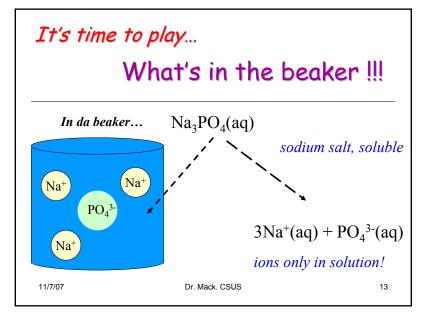
Dr. Mack. CSUS

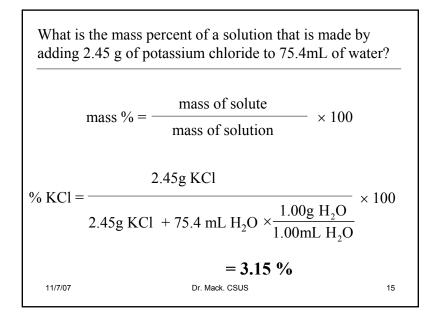
10

(a) CdCO ₃ insoluble	carbonates are generally insoluble except for <i>Rule 1</i> cations		
(b) MgO <i>insoluble</i>	oxides are generally insoluble except for <i>Rule 1</i> cations		
(c) Na ₂ S soluble	<i>Rule 1</i> cation	(e) AgCl <i>insoluble</i>	chlorides are generally soluble w/ exception of: Ag ⁺ , Pb ²⁺ & Hg ₂ ²⁺
(d) Pb(NO ₃) ₂ soluble	<i>Rule 2</i> anion		

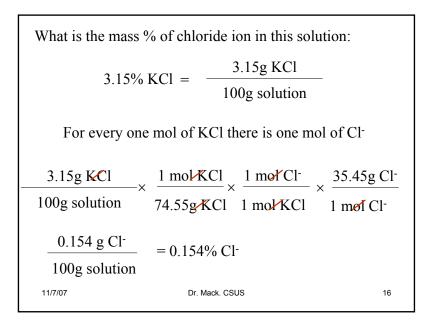
GENERAL SOLUBILITIES OF IONIC COMPOUNDS IN WATER

TABLE 7.4 General solubilities of ionic compounds in water

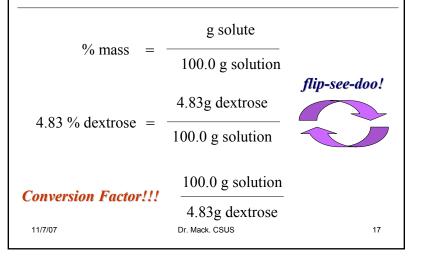

Compounds	Solubility	Exceptions
Group IA (Na ⁺ , K ⁺ , etc.) and $\mathrm{NH_4^+}$	Soluble	
Nitrates (NO3 ⁻)	Soluble	
Acetates (C2H3O2)	Soluble	
Chlorides (Cl ⁻)	Soluble	Chlorides of Ag+, Pb2+, Hg+ (Hg2+)
Sulfates (SO42-)	Soluble	Sulfates of Ba^{2+} , Sr^{2+} , Pb^{2+} , Hg^+ (Hg_2^{2+})
Carbonates (CO32-)	Insoluble ^a	Carbonates of group IA and NH4+
Phosphates (PO4 ³⁻)	Insoluble ^a	Phosphates of group IA and NH4+

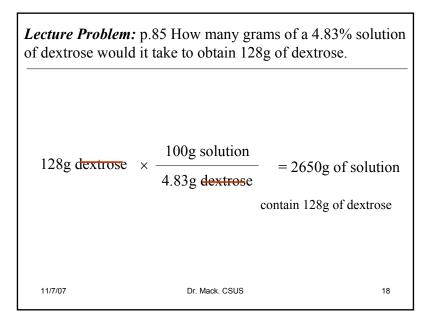

^aMany hydrogen carbonates (HCO3⁻) and phosphates (HPO4²⁻, H2PO4⁻) are soluble. © 2004 Thomson - Brooks/Cole

Na₂CO₃ (NH₄)₂SO₄ magnesium oxide $V(C_2H_3O_2)_2$ Soluble Soluble Insoluble Soluble


11/7/07

Dr. Mack. CSUS





The relative amounts of solute in the solution is expressed
by a concentration.Mass Percent (a.k.a. Weight Percent)mass percent: $\frac{mass of solute (g)}{mass of solution (g)} \times 100$ 11770Dr. Mark. CSUS

How many grams of a 4.83% solution of dextrose would it take to obtain 128g of dextrose.

