

Exam 1: Friday 10/5/07 (here in lecture)								
What will be covered on the exam? What do I need to bring? •Chapter 1-3 (all) •Chapter 4: (4.1-4.5 and 4.10) •Any thing from lab as well								
Bring a Pencil, Eraser, Calculator and scamtron form 882 YOU NEED TO KNOW YOUR LAB SECTION NUMBER!								
10-3-07	CSUS Chem 6A F07 Dr. Mack	2						

How do we know which atom is in the center of a molecule?

In general, the atom that is the lowest and to the left on the periodic table will be in the center.

	TAB	LE 4.4	Elect	troneg	ativitie ive ele	s for th ments	e c omn	non	
			Increasing electronegativity					S would be	
Most often, the atom with the lowest	Li 1.0	Be 1.5	H 2.1	B 2.0	C 2.5	N 3.0	0 3.5	F 4.0	favored in the center over O
electronegativity will	Na 0.9	Mg 1.2		Al 1.5	Si 1.8	Р 2.1	S 2.5	CI 3.0	Decreasing electronegativity
be in the center.	K 0.8	Ca 1.0		Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	
	Rb 0.8	Sr 1.0		In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	
	Cs 0.7	Ba 0.9							Ļ
A a ana mawaa from la	0 2004 Thoma		tond	l ho	ttom	to	-		a nariadia

As one moves from left to right and bottom to top on the periodic table, the *ELECTRONEGATIVITY* of an atom decreases.

6

10-3-07 CSUS Chem 6A F07 Dr. Mack

Experimentally however, the H–C–H bond angles are found to be 109.5°

If this is the case, the molecule cannot be planar...

$$H \stackrel{90^{\circ}}{\underset{90^{\circ}}{\overset{}_{=}}} C \stackrel{90^{\circ}}{\underset{109.5^{\circ}}{\overset{}_{=}}} + 109.5^{\circ} + 109.5^{\circ} + 109.5^{\circ} = 438.0^{\circ}$$

The methane molecule must be 3-D since the sum of the angles is greater than 360 degrees!

CSUS Chem 6A F07 Dr. Mack

14

Molecular Shapes: Valence Shell Electron Pair Repulsion

In order to predict molecular shape, we assume the valence electrons of each atom in the molecule repel one another. When this occurs, the molecule adopts a 3D geometry that minimizes this repulsion where:

This process is known as:

Valence Shell Electron Pair Repulsion theory. (VSEPR)

