	Chemistry 6A Fall 2007 Dr. J. A. Mack	
	1 0/1/07	
10-1-07	CSUS Chem 6A F07 Dr. Mack	1

Exam 1: Friday 10/5/07 (here in lecture)

Bring a scamtron form 882 (100 question jobby-doo)

How many questions will be on the exam?

enough to keep you busy for 50 min

Some of you will finish early Some of you will have just enough time Some of you will not finish on time

As always, it depends upon you level of preparation...

10-1-07

CSUS Chem 6A F07 Dr. Mack

2

Exam 1: Friday 10/5/07 (here in lecture)

What will be covered on the exam?

What do I need to bring?

Chapter 1-3 (all)Chapter 4: (4.1-4.5 and 4.10)Any thing from lab as well

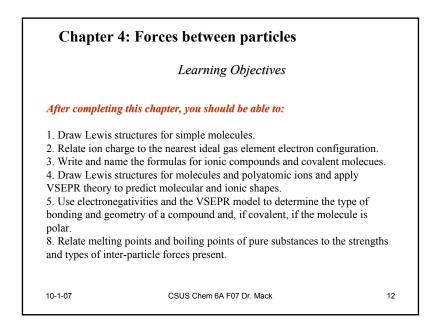
Bring a Pencil, Eraser, Calculator and scamtron form 882

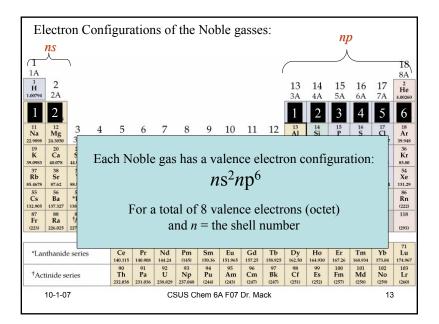
YOU NEED TO KNOW YOUR LAB SECTION NUMBER!

How should I prepare for the exam...
1. Get some sleep the night before.
2. Go over your quizzes.
3. look at your HW
4. look over additional HW problems
5. Focus on what you know first

What should I not do...

Put off studying until Thursday night
Party Thursday night! (there will be plenty of time for that later)
Snarf down 4 doughnuts and 3 red-bulls right before the exam!


10-107
CSUS Chem 6A F07 Dr. Mack

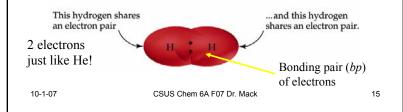

4

There wil	<image/>	
10-1-07	CSUS Chem 6A F07 Dr. Mack	6

H 1.00794			Las	t tim	ıe											H 1.00794	He 4.002602
3 Li 6.941	4 Be 9.012182					~ • • • •		ectro of su		2		B 10.811	Č 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
Na 22.989770	¹² Mg 24.3050			20	njig	urui		oj su	ijur	<i>:</i>		13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	Ar 39.948
19 K 39.0983	Ca 40.078	Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51,9961	Mn 54.938049	Fe 55.845	27 Co 58.933200	Ni 58.6934	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	Kr 83.80
85.4678	38 Sr 87.62	39 Y 88.90585	2r 91.224	41 Nb 92.90638	Mo 95.94	43 Tc (98)	44 Ru 101.07	Rh 102.90550	Pd 106.42	Ag 107.8682	Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	86 Ba	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
Fr (223)	Ra (226)	Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (2G)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	112 (277)		114 (289) (287)		(289)		(293)
,		1 /			1	2 4			1			c					
	ast e	lect	ron	to fil	1:	3p ⁴			ele	ectro	on co	onfig	gurat	10n:			
									$1s^2$	2s	2	2p ⁶	3s ²	2 3	p ⁴		
	10-1-0	7				CS	US C	hem 6/	A F07	Dr. Ma	ck					9	

Last i	time	•••														
El	ectro	on C	Confi	igura	atior	ns ar	e wr	itten	by	shel	l eve	en th	noug	gh th	e	
$\begin{bmatrix} 1\\H\\1s^1 \end{bmatrix}$ ele	ectro	ons f	ĭll b	y the	e per	riod	ic tal	ole:								2 He 1s ²
$\begin{array}{ccc} 3 & 4 \\ Li & Be \\ 2s^1 & 2s^2 \end{array}$											$5 \\ B \\ 2s^2 2p^1$	6 C 2s ² 2p ²	7 N 2s ² 2p ³		9 F 2s ² 2p ⁵	10 Ne 2s ² 2p ⁶
11 12 Na Mg 3s ¹ 3s ²											13 Al 3s ² 3p ¹	14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S 3s ² 3p ⁴	17 Cl 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 Sc 4s ² 3d ¹	22 Ti 4s ² 3d ²	23 V 4s ² 3d ³	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	ŊĨi.	29 Cu 4s ¹ 3d ¹⁰	30 Zn 4s ² 3d ¹⁰	31 Ga 4s ² 3d ¹⁰ 4p ¹	32 Ge 4s ² 3d ³⁰ 4p ²	33 As 4s ² 3d ¹⁰ 4p ³	34 Se 4s ² 3d ¹⁰ 4p	35 Br 4s ² 3d ¹⁰ 4p ⁵	36 Kr 4s ² 3d ¹⁰ 4p ⁶
					la	ist e	lectr	on to	fill	: 3	d ⁸					
electro filling:		onfig	urat	tion	by		1s ²	2s ²	_	p ⁶ \r]	3s ²	3р	,6∠	4s ²	3d ⁸	
electro shell: (by			2s ²		L	3s ²	3р	6 2	4s ²	3d ⁸	
			Cor	e no	tatio	on:	[/	Ar] 30	184s	s ²						
10-1-0	17				C	SUS C	hem 6	A F07 E	or. Ma	ck					10)

El	ectr	on C	Conf	igura	atior	ns of	the	Noł	ole g	asse	s:						
+1				The	ator	ns g	ain d	or la	ose								18 8A
1 H 1.00794	+2			elec elec	tron tron	s to con	atta figu	in th ratio	ie	f the		+3	14 4A 6	-3	-2 8 0	9 F	2 He 1.00260
6.941 11 Na	9.01218 12 Mg	3	4	<i>near</i> 5 5B	6	7	le ga	9	10	11	12 2B	10.811 13 Al	12.011 14 Si	14.0067 15 P	15.9994 16 S	18.9984 17 Cl	20.1797 18 Ar
22.9898 19 K 39.0983	24.3050 20 Ca 40.078	3B 21 Sc 44.9559	4B 22 Ti 47.88	23 V 50.9415	6B 24 Cr 51.9961	7B 25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	1B 29 Cu 63.546	30 Zn 65.39	26.9815 31 Ga 69.723	28.0855 32 Ge 72.61	30.9738 33 As 74.9216	32.066 34 Se 78.96	35.4527 35 Br 79.904	39.948 36 Kr 83.80
37 Rb 85.4678	Tł	nis	exp	lai	ns t	he	cha	arge	es v	ve	see	for	· at	omi	ic i	ons	29
55 Cs 132.905	Ba 137.327	*La 138.906	Hf 178.49	Ta 180.948	W 183.84	Re 186.207	Os 190.23	Ir 192.22	Pt 195.08	Au 196.967	Hg 200.59	T1 204.383	Pb 207.2	Bi 208.980	Po (209)	At (210)	Rn (222)
87 Fr (223)	88 Ra 226.025	89 †Ac 227.028	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (272)		114 (287)		116 (289)		118 (293)
*Lar	nthanid	e series		58 Ce 140.115 90	59 Pr 140.908 91	60 Nd 144-24 92	61 Pm (145) 93	62 Sm 150.36 94	63 Eu 151.965 95	64 Gd 157.25 96	65 Tb 158.925 97	66 Dy 162.50 98	67 Ho 164.930 99	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967 103
[†] Act	inide s	eries		90 Th 232.038	Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	Cm (247)	97 Bk (247)	98 Cf (251)	Es (252)	Fm (257)	101 Md (258)	No (259)	103 Lr (260)
	10-1-0	7				CS	SUS C	hem 6	A F07	Dr. Ma	ack					14	


Covalent Bonds (Diatomic Molecules)

Covalent chemical bonds involve the sharing of a pair of valence electrons by two atoms.

Covalent bonds lead to stable molecules if they share electrons in such a way as to create a noble gas configuration for each atom.

(octet: ns²np⁶)

Hydrogen gas (H_2) forms the simplest covalent bond in the diatomic hydrogen molecule.

Lewis Theory: 1916-1919 - Lewis, Kossel, and Langmuir

Elements of the theory:

1. Valence electrons play a fundamental role in chemical bonding.

2. *Ionic bonding* involves the *transfer* of one or more electrons from one atom to another.

3. *Covalent bonding* involves *sharing* electrons between atoms.

4. Electrons are transferred or shared such that each atom gains an electron configuration of a noble gas (ns^2np^6) , i.e. having 8 outer shell (valence) electrons.

5. This arrangement is called the *octet rule*.

Exceptions to the octet rule do exist and will be explored later.

10-1-07

Lewis Theory: 1916-1919 - Lewis, Kossel, and Langmuir

Elements of the theory:

1. Valence electrons play a fundamental role in chemical bonding.

2. *Ionic bonding* involves the *transfer* of one or more electrons from one atom to another.

3. *Covalent bonding* involves *sharing* electrons between atoms.

4. Electrons are transferred or shared such that each atom gains an electron configuration of a noble gas (ns^2np^6) , i.e. having 8 outer shell (valence) electrons.

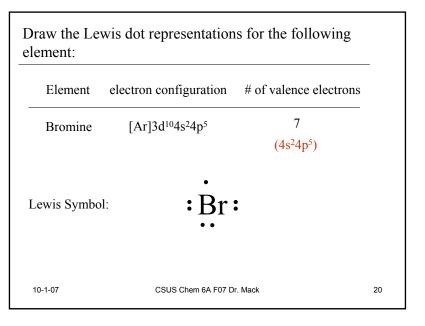
5. This arrangement is called the *octet rule*.

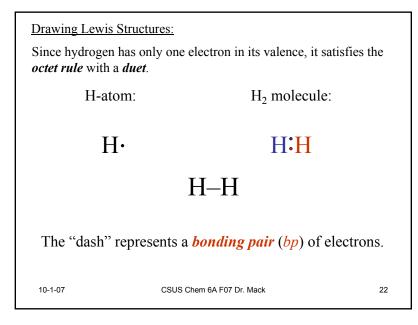
Exceptions to the octet rule do exist and will be explored later.

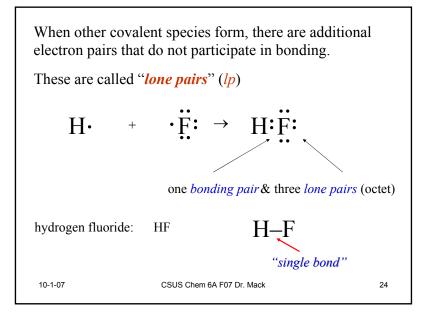
```
CSUS Chem 6A F07 Dr. Mack
```

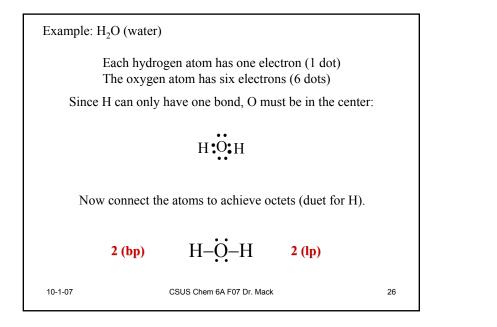
Lewis Symbols represent the resulting structures that accommodate the octet rule.

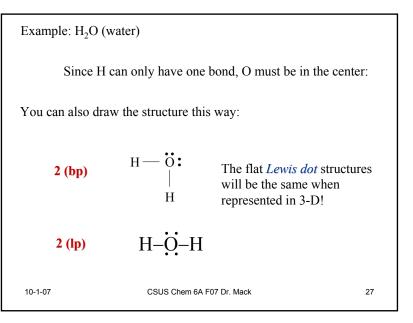
		1A(1) <i>ns</i> 1	2A(2) <i>ns</i> ²		• •		6A(16) <i>ns²np</i> 4		
Period	2	• Li	•Be•	• B •	٠ċ٠	• • •	: <u>.</u> .	: F :	:Ne:
	3	• Na	•Mg•	• AI •	• Si •	• • •	: s ·	: ci :	: Ar :


The elemental symbol represents the nucleus and the dots represent the valence electrons.


17


CSUS Chem 6A F07 Dr. Mack


18


Draw the Lewis dot representations for the following
element:Elementelectron configuration# of valence electronscarbon $1s^22s^22p^2$ 4
($2s^22p^2$)Lewis Symbol: \cdot \cdot 10-107CSUS Chem 6A F07 Dr. Mack19

