

1

What is the net ionic equation for the reaction of aqueous lithium hydroxide and aqueous nitric acid? Molecular Equation: $LiOH(aq) + HNO_3(aq) \rightarrow H_2O(l) + LiNO_3(aq)$ balanced? ves! **Ionic Equation:** $Li^{+}(aq) + OH^{-}(aq) + H^{+}(aq) + NO_{3}^{-}(aq) \rightarrow$ Net Ionic Equation: $H_2O(l) + Li^+(aq) + NO_3^-(aq)$ $OH^{-}(aq) + H^{+}(aq) \rightarrow H_2O(l)$ 10/19/07 Dr. Mack. CSUS 3

Which of the following chemical equations is an acid-base reaction? a) 2 HCl(aq) + Zn(s) \rightarrow H₂(g) + ZnCl₂(aq) b) HCl(aq) + NH₃(aq) \rightarrow NH₄Cl(aq) c) HCl(aq) + AgNO₃(aq) \rightarrow AgCl(s) + HNO₃(aq) d) $Ba(OH)_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2 NaOH(aq)$ e) 2 NaOH(aq) + CuCl₂(aq) \rightarrow Cu(OH)₂(s) + 2 NaCl(aq) If you chose "b" you are correct! a) is a RedOx reaction and c) to e) are precipitation reactions! Dr. Mack. CSUS 10/19/07 4

a) CaO(s) + H₂O(l) \rightarrow Ca(OH)₂(aq) b) $H_2(g) + Br_2(g) \rightarrow 2 HBr(g)$ c) Ca(s) + 2 HCl(aq) \rightarrow CaCl₂(aq) + H₂(g) d) 2 NaBr(aq) + $F_2(g) \rightarrow 2 NaF(aq) + Br_2(g)$ e) 2 H₂O(l) \rightarrow 2 H₂(g) + O₂(g)

All of the following are oxidation-reduction reactions EXCEPT

+2, -2 +1, -2 +2, -2, +1

Dr. Mack. CSUS

6

Predict the products of the following reactions: magnesium metal reacts with chlorine gas to form... balanced? $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$ Yep! Solutions of nitric acid and sodium carbonate are mixed... 2HNO₃(aq) + Na₂CO₃(aq) \rightarrow H₂O(l) + CO₂(g) + 2 NaNO₃(aq) balanced? Nope! Which is an acid neutralization reaction? Dr. Mack. CSUS 7

10/19/07

Thermochemical Equations: When the reaction is reversed, the sign of ΔH reverses:					
$CH_4(g) + 2O_2(g)$	$) \rightarrow \mathrm{CO}_2(g) + 2\mathrm{H}_2\mathrm{O}(g)$	$\Delta H = -802 \text{ kJ}$ Exothermic			
$CO_2(g) + 2H_2O($	$(g) \rightarrow \operatorname{CH}_4(g) + 2\operatorname{O}_2(g)$	$\Delta H = +802 \text{ kJ}$ Endothermic			
10/19/07	Dr. Mack. CSUS	11			

The amounts of substances and heat are expressed per moles.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g) + 185 \text{ kJ}$$

1 mole 1 mole 2 mole

How many kJ of energy are released when 23.7 g of hydrogen are reacted with excess chlorine to form hydrogen chloride.

23.7g H₂ ×
$$\frac{1 \text{mol H}_2}{2.02g \text{ H}_2}$$
 × $\frac{185 \text{kJ}}{1 \text{mol H}_2}$ × $\frac{10^3 \text{J}}{1 \text{kJ}}$ = 2.17×10⁶ J

10/19/07

12

Stoichiometry: The branch of chemistry that deals with the mole proportions of chemical reactions.

Stoichiometric ratio: The ratio of any two species (reactants or products) in a balanced chemical reaction.

 $2A + 3B \longrightarrow A_2B_3$

2 A's combine with 3B's

CONVERSION FACTORS!!!

	2A	3B	
	3B	2A	
10/19/07	Dr. Mack. CSUS		14

Consider the following reaction:					
ammonia is formed from its elements:					
	3 H ₂ (g) +	$N_2(g) \longrightarrow$	2 NH ₃ (g)		
Write all of the molar ratio conversion factors for this reaction:					
<i>how many should there be?</i> six 3 × 2					
	3mol H ₂	1mol N ₂	3mol H ₂		
	1mol N ₂	2mol NH ₃	2mol NH ₃		
	1mol N ₂	2mol NH ₃	2mol NH ₃		
	3mol H ₂	1mol N ₂	3mol H ₂		
10/19/07		Dr. Mack. CSUS	17		

Given the following reaction, how many moles of nitrogen are needed to completely react 9 moles of hydrogen?

$$3 H_2(g) + N_2(g) \longrightarrow 2 NH_3(g)$$

$$9 \text{ mol } H_2 \times \frac{1 \text{ mol } N_2}{3 \text{ mol } H_2} = 3 \text{ mol of } N_2$$
How many mols of ammonia will be produced?
$$3 \text{ mol of } N_2 \times \frac{2 \text{ mol } NH_3}{1 \text{ mol } N_2} = 6 \text{ mol } NH_3$$
10/19/07 Dr. Mack. CSUS 18

Give the following reaction

$$2\mathrm{C}_{2}\mathrm{H}_{6}~(\mathrm{g})~+~7~\mathrm{O}_{2}(\mathrm{g})~\rightarrow~4\mathrm{CO}_{2}(\mathrm{g})~+~6\mathrm{H}_{2}\mathrm{O}(l)$$

How many moles of water are produced when 3 mols of oxygen react?

$$3.0 \text{ mol } \Theta_2 \times \frac{6 \text{ mol } H_2 \text{O}}{7 \text{ mol } \Theta_2} = 2.6 \text{ mol } H_2 \text{O}$$

$$2 \text{ sig. figs.} \qquad exact \qquad 2 \text{ sig. figs.}$$

$$factor$$
How many moles of C_2H_6 must react to produce 1.75 mols of CO_2 ?
$$1.75 \text{ mol } CO_2 \times \frac{2 \text{ mol } C_2H_6}{4 \text{ mol } CO_2} = 0.875 \text{ mol } C_2H_6$$

$$10/19/07 \qquad \text{Dr. Mack. CSUS} \qquad 19$$