	Chemistry 6A F2007	
	Dr. J.A. Maek	
11/19/07	11/19/07 Dr. Mack. CSUS	1

Reaction Rates:

Reaction Rate: The change in the concentration of a reactant or a product with time $(M \cdot s^{-1})$.

A reaction generates hydrogen gas (H₂) as a product. The reactants are mixed in a sealed 250 mL vessel. After 15.0 minutes, 3.91×10^{-2} mol H₂ have been generated. Calculate the average rate of the reaction in Ms⁻¹.

The initial concentration of H_2 is zero After 15.0 min there are 3.91×10^{-2} mols of H_2

$$\Delta C = C_t - C_o$$

$$\Delta C \text{ (moles/L)} = \frac{3.91 \times 10^{-2} \text{ mols } - 0}{250.0 \text{ mL} \times \frac{10^3 \text{ mL}}{1\text{ L}}} = 0.156 \text{ M}$$

11/19/07

8

6

A reaction generates hydrogen gas (H₂) as a product. The reactants are mixed in a sealed 250 mL vessel. After 15.0 minutes, 3.91×10^{-2} mol H₂ have been generated. Calculate the average rate of the reaction in Ms⁻¹.

A reaction generates hydrogen gas (H₂) as a product. The reactants are mixed in a sealed 250 mL vessel. After 15.0 minutes, 3.91×10^{-2} mol H₂ have been generated. Calculate the average rate of the reaction in Ms⁻¹.

The initial concentration of $\rm H_2$ is zero After 15.0 min there are 3.91 $\times 10^{-2}$ mols of $\rm H_2$

$$Rate = \frac{\Delta[H_2]}{\Delta t} = \frac{\Delta C}{t_f - t_{in}}$$

$$Rate = \frac{0.156 \text{ M}}{(15.0 \text{ min } -0 \text{ min}) \times \frac{60 \text{ s}}{1 \text{ min}}} = 1.73 \times 10^{-4} \text{ Ms}^{-1}$$
11/19/07 Dr. Mack. CSUS 9

Reaction Rate

- •A reaction rate measures the speed of a reaction. (How fast)
- •Reaction rates must be determined experimentally.
- •The rate of reaction must be a function of *concentration*:
- •As concentration increases, so do the number of *collisions*...
- •As the number of collisions increase, so does the *probability* of a reaction.
- •This in turn increases the *rate* of conversion of reactants to products. (In most cases)
- •In many reactions the collision must have a *"minimum energy"* to activate the reaction.

```
11/19/07
```

Dr. Mack. CSUS

10

ACTIVATION ENERGY

When a reaction is non-spontaneous, the reaction may proceed if it is "kick-started" with a little energy.

THE PRESENCE OF CATALYSTS

•*Catalysts* are substances that speed up chemical reactions *without being consumed* in the reaction.

•A *homogeneous catalyst* exists in the same phase of the a reaction mixture.

•A *heterogeneous catalyst* involves usually, the catalyst as a solid the reaction takes place on the catalyst surface.

•Heterogeneous catalysts generally speed up a reaction by providing an *alternate reaction pathway* with a *lower activation energy* than the normal pathway.

•Solid catalysts provide a surface on which reactant molecules *adsorb* with increasing the rate by reducing orientation requirements.

•Adsorbed molecules with *favorable orientations* are can more easily find one another, this increasing the rate.

11/19/07

