

Isotopes, Atomic Numbers, and Mass Numbers•Atomic number (Z) = number of protons in the nucleus.•Mass number (A) = total number of nucleons in the nucleus (i.e., protons and neutrons).•One nucleon has a mass of 1 amu
(Atomic Mass Unit) a.k.a "Dalton"•Isotopes have the same Z but different A.•The elements are arranged by Z on the periodic table.By convention, for element X, we write $A \\ Z \\ X$ 9-17-07

Atomic Masses and the Periodic Table:In nature, an element is found to contain a mixture of all
of the naturally occurring isotopes.These isotopes occur in proportions represented by their
natural abundances.As macroscopic beings, we measure matter on a "bulk"
scale (many atoms).The *fraction or abundance* of each of the individual
isotopes statistically weights the average atomic mass of
an element.

9-17-07

<u>Example</u>	<u>:</u>				
Chlorine has two isotopes:					
	Cl-35	&	Cl- 37	shorthand notation	
	$^{35}_{17}\text{Cl}$		$^{37}_{17}\text{Cl}$		
Each isotope occurs in nature with a specific mass and corresponding fraction or " <i>Percent Abundance</i> ".					
³⁵ ₁₇ Cl			³⁷ ₁₇ Cl		
75.53 %	34.96885 u		24.47 %	36.96590 u	
1 u = 1 amu					
9-17-07	CSUS Chem 6A F07 Dr. Mack 30			30	

The *average weighted* atomic mass is determined by the following mathematical expression:

fraction fraction Average mass of a mass of a that are that are mass of a *Cl-35 Cl-37* Cl-37 Cl-35 Cl atom atom atom abundance abundance $m Cl (u) = m Cl-35 \times$ + m Cl-37 \times of Cl-37 of Cl-35 $= 34.96885u \times 0.7553 + 36.96590 \times 0.2447 = 35.45 u$ (4 sig. fig) This is the value that is reported on the periodic table. Note that: 0.7553 + 0.2447 = 1.0000 (100%)

9-17-07

CSUS Chem 6A F07 Dr. Mack

31

Avagagro's Number

Since one mole of ${}^{12}C$ has a mass of 12g (exactly), 12g of ${}^{12}C$ contains 6.022142 x 10^{23} ${}^{12}C$ -atoms.

But carbon exists as 3 isotopes: C-12, C-13 &C-14

The average atomic mass of carbon is 12.011 u.

From this we conclude that 12.011g of carbon contains 6.022142×10^{23} C-atoms

Is this a valid assumption?

Yes, since N_A is so large, the statistics hold.

9-17-07

CSUS Chem 6A F07 Dr. Mack

33

<u>Molar Masses</u>

Since we can equate mass (*how much matter*) with moles (*how many particles*) we now have a *conversion factor* that relates the two.

mols \times molar mass (g/mol) = grams

The Molar Mass of a substance is the amount of matter that contains one-mole or 6.022×10^{23} particles.

aka: Avogadro's number (N_A)

The atomic masses on the Periodic Table also represent the molar masses of each element in grams per mole (g/mol)

9-17-07

CSUS Chem 6A F07 Dr. Mack

34

So if you have 12.011g of carbon... you have 6.022×10^{23} carbon atoms! So if you have 39.95g of argon... you have 6.022×10^{23} argon atoms! if you have a mole of dollar bills... you are Bill Gates... you have 6.022×10^{23} bucks! and if you have 6.022×10^{23} avocados... you have... **a "guacamole"** 9-17-07 CSUS Chem 6A F07 Dr. Mack 36