Chemistry 6A F2007	
Dr. J.A. Mack	
	wednesday
	10/17/07
10/16/07	Dr. Mack. CSUS

Metal displacing a metal in the salt:

If a metal is more reactive than a different metal in a salt, it will displace a metal in the inorganic salt compound.

$$0 +2$$

$$Zn(s) + Cu(NO_3)_2(aq)$$

$$\longrightarrow Cu(s) + Zn(NO_3)_2(aq)$$

$$0 +2$$

The blue copper ions are displaced by the zinc metal.

1

10/16/07

Dr. Mack. CSUS

Metals reacting with water:

Group I metals and some Gr. II metals will react with water producing hydrogen and the metal hydroxide.

Example:

Balancing: 0 +1 0 +1 $2 \operatorname{Na}(s) + 2 \operatorname{H}_2 O(l) \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{NaOH}(aq)$ sodium is oxidized, H⁺ is reduced $2 \operatorname{Na's}, 4H's \& 2 \operatorname{O's} 2 \operatorname{Na's}, 4H's \& 2 \operatorname{O's}$ 10/16/07 Dr. Mack. CSUS

Halogen with a halogen salt (*halide*):

A stronger halogen (F_2 , Cl_2 , $Br_2 \& I_2$) will displace a weaker halide (F^- , Cl^- , $Br^- \& I^-$).

$$(F_2 > Cl_2 > Br_2 > I_2)$$

$$Cl_2(g) + 2KI(aq) \longrightarrow I_2(s) + 2KCl(aq)$$

$$Cl_2(g) + KF(aq) \longrightarrow \text{ no reaction}$$
10/16/07 Dr. Mack. CSUS 6

Decomposition Reactions:

Reactions in which a compound breaks down into more simple compounds or elements.

$$CaCO_3(s) \xrightarrow{\Lambda} CaO(s) + CO_2(g)$$

$$2Fe_2O_3(s) \longrightarrow 4Fe(s) + 3O_2(g)$$

Notice that these are often the reverse of combination reactions.

Sodium bicarbonate decomposes into sodium carbonate, water and carbon dioxide. Write the balanced equation. NaHCO₃(s) \longrightarrow Na₂CO₃(s) + H₂O(*l*) + CO₂(g) Balancing: 2 NaHCO₃(s) \longrightarrow Na₂CO₃(s) + H₂O(*l*) + CO₂(g) 10/16/07 Dr. Mack. CSUS 8

10/16/07

7

5

Types of Reactions in Solution:		
Precipitation Reactions:	A reaction where an insoluble solid (precipitate) forms and drops out of the solution	
Acid-base Neutralization:		
	A reaction in which an acid reacts with a base to yield water plus a <i>salt</i> .	
Gas forming Reactions:	A reaction where an insoluble gas is formed.	
10/16/07	Dr. Mack. CSUS 10	

Double Replacement Reactions: (Metathesis)

Metathesis reactions involve swapping ions in solution:

 $AX + BY \rightarrow AY + BX.$

Metathesis reactions will lead to a *precipitate* if one of the products is an insoluble solid.

Writing the Net Ionic Equation:

Molecular Equation:

Pb(NO₃)₂(aq) + 2KI(aq) \rightarrow 2KNO₃(aq) + PbI₂(s) Total Ionic Equation: Pb²⁺ (aq) + 2NO₃⁻ (aq) + 2K⁺(aq) + 2I⁻(aq) \rightarrow 2K⁺(aq) + 2NO₃⁻ (aq) + PbI₂(s) Cancel out the *spectator ions* to yield the net ionic equation: Pb²⁺ (aq) + 2I⁻(aq) \rightarrow PbI₂(s)

10/16/07

Dr. Mack. CSUS

14

Example: A solution of sodium phosphate is added to a solution of aqueous barium nitrate. A white ppt is observed.

Unbalanced Equation:

$$Na_3PO_4(aq) + Ba(NO_3)_2(aq) \rightarrow Ba_3(PO_4)_2(s) + NaNO_3(aq)$$

Molecular:

$$2Na_{3}PO_{4} (aq) + 3Ba(NO_{3})_{2} (aq) \rightarrow Ba_{3}(PO_{4})_{2} (s) + 6NaNO_{3} (aq)$$
Ionic:

$$6N_{a}^{+} (aq) + 2PO_{4}^{3-} (aq) + 3Ba^{2+} (aq) + 6NO_{3}^{-} (aq)$$

$$\rightarrow Ba_{3}(PO_{4})_{2} (s) + 6N_{a}^{+} (aq) + 6NO_{3}^{-} (aq)$$
Net Ionic:

$$2PO_{4}^{3-} (aq) + 3Ba^{2+} (aq) \rightarrow Ba_{3}(PO_{4})_{2} (s)$$

$$10/16/07 \qquad Dr. Mack. CSUS \qquad 18$$

Reactions of Acids & Bases: Acid-Base Neutralization Acid + Base \rightarrow Salt + Water (usually) $HA (aq) + MOH(aq) \rightarrow MA(aq) + HOH(l)$ based on this water should be HOH(l) acid - Strong base neutralization: HBr(aq)/KOH(aq) $HBr(aq) + KOH(aq) \rightarrow KBr (aq) + H_2O(l)$ 10/16/07 Dr. Mack. CSUS 19

