

When a compound contains both carbon, hydrogen & sometimes oxygen, the products are $CO_2(g) \& H_2O(l)$

Example:

Methane, $CH_4(g)$ combusts to form carbon dioxide and water

$CH_4(g) +$	$O_2(g) \longrightarrow$	$CO_2(g)$	+	H_2	O(<i>l</i>)

reacts with oxygen

The products of combustion of a hydrocarbon are always

 $CO_2(g)$ and $H_2O(l)$

chem 6A F07

Dr. Mack. CSUS

4

Balancing Combustion Reactions: Example	
$C_{2}H_{6} + O_{2} \rightarrow CO_{2} + H_{2}O$ $2 C's \& 6 H's 2 O's 1 C \& 2 O's 2 H's \& 1 O$ balance last	
$\underline{2}_{C_2H_6} + O_2 \rightarrow CO_2 + \underline{6}_{H_2C_2H_6}$)
balance C next $2C_2H_6 + O_2 \rightarrow \underline{4}CO_2 + 6H_2O_2$	
$\begin{array}{c} \text{balance O} \\ 2C_2H_6 + \underline{7} O_2 \rightarrow 4CO_2 + 6H_2O \end{array}$	
4 C's 12 H's 14 O's 4 C's 12 H's 14 O's	
chem 6A F07 Dr. Mack. CSUS	6

Chemical Equations:

In a chemical equation one uses chemical symbols to describe a chemical process.

Example: Upon heating, calcium carbonate decomposes to form calcium oxide and carbon dioxide.

 $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$ heat products reactant supplied

chem 6A F07

Dr. Mack. CSUS

7

Note that when I wrote the chemical formulas, I also indicated the *physical state* of the compound.

One must indicate the state of a compound or element by:

	(s) for solid
	(<i>l</i>) for liquid
	(g) for gas
	(aq) for a species in water
chem 6A F07	Dr. Mack. CSUS

Reduction and Oxidation Reactions: (RedOx)

Reduction: elements or compounds that gain electrons during a reaction

Oxidation: elements or compounds that lose electrons during a reaction

Oxidation numbers: A bookkeeping tool used in chemistry to account for the exchange of electrons in a RedOx process.

8

	+1						Oxi	dati	on N	Jum	bers	5						8A 18
cter	1 H	+2											+3	4A 14	-3	-2	-1	2 He
hara	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
llic c	11 Na	12 Mg		Variable						13 Al	14 Si	15 P	16 S	17 Cl	18 Ar			
meta	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
sing	37 Rb	38 Sr	39 Y	Met	als	take	on	thei	r foi	mal	cha	irge	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
Icrea	55 Cs	56 Ba	71 Lu	72	73	74	75	76	77	78	79	80	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
₽↓	87 Fr	88 Ra	103 Lr	Rf	N(Db	on-n sg	neta Bh	IS d(Hs) the Mt	e sar	ne			114		116		
		Metal	ls	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	1
		Metal	lloids	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	
<	Neutral elements always have an oxidation number of zero!																	
	chem 6A F07 Dr. Mack. CSUS 11																	

Oxidation numbers In the compound potassium bromate (KBrO₃), the oxidation number of bromine (Br) is? The compound is neutral so the sum of the oxidation numbers should be zero. +1 ? $3\times(-2) = -6$ **KBrO₃** 1+?+(-6) = 0 ? = 5 chem 6A F07 Dr. Mack. CSUS 12

Ca(s)	+	O ₂ (g)	→	CaO(s)
1 C	a & 2	1 Ca & 10		
Not balanced!				

To balance, one must multiply each component of the reaction by coefficients that bring about balance.

One needs 2 O's on the right, multiply CaO by 2

 $Ca(s) + O_2(g) \longrightarrow 2 CaO(s)$

Now balance Ca with another "2"

 $2 \operatorname{Ca}(s) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{CaO}(s)$

chem 6A F07

Dr. Mack. CSUS

Assigning Oxidation Numbers:

$$\begin{array}{cccc} 0 & 0 & +2 & -2 \\ 2 \operatorname{Ca}(\mathrm{s}) & + & \operatorname{O}_2(\mathrm{g}) & \longrightarrow & 2 \operatorname{CaO}(\mathrm{s}) \end{array}$$

Ca goes form 0 to + 2, it has been *oxidized* O goes form 0 to - 2, it has been *reduced*

Since O brings about the oxidation of Ca, it is the "Oxidizing agent"

Since Ca brings about the reduction of O, it is the "Reducing agent"

chem 6A F07

Dr. Mack. CSUS

15

Balancing REDOX reactions:						
$Fe + O_2$	$\rightarrow \text{Fe}_2\text{O}_3$					
oxidation #'s: 0 0	+3 -2					
	,					
oxidation half reaction: ${Fe \rightarrow Fe^{+3} + 3e^{} x^{4}}$						
reduction half reaction: ${O_2 + 4e^- \rightarrow 2O^{2-}} \times 3$						
Balance electrons transferred then sum the half RXN's:						
$4Fe + 3O_2 + 12e^- \rightarrow 2Fe_2O_3 + 12e^-$						
$4Fe + 3O_2 \rightarrow 2Fe_2O_3$						
chem 6A F07 Dr. Mack	. CSUS 19					