

if you know Molarity and volume, you know moles! Molarity \times Volume = moles $\frac{\text{mols}}{L} \times L = \text{moles}$

if you know mols and molarity, you know volume!

moles $\times \frac{1}{M} = \text{Volume}$ mol $\times \frac{L}{\text{mol}} = L$ Dilution of Solutions: When more solvent is added to a solution, the number of moles of solute do not change, but the total volume does. decrease the molarity $M = \frac{moles \ solute}{L \ of \ solution} \quad increase V$ 11/107 Dr. Mack. CSUS

11/14/07

3

Check this out...

$$M = \frac{0.450 \text{mols/L} \times 250.0 \text{mL} \times \frac{L}{10^{5} \text{ml}}}{300.0 \text{mL} \times \frac{L}{10^{5} \text{ml}}} = 0.375 \text{ M}$$
The conversion factors cancel out!
So one can write:

$$mew M = \frac{\text{old } M \times \text{old } V}{\text{new } V}$$
11/107 Dr. Mack. CSUS

10.0 mL of a 0.470 M solution is added to a 250.0 mL volumetric flask than diluted to the calibration mark with water. What is the new concentration of the solution?

Species in Solution, <i>Electrolytes</i> :				
Strong electrolytes:	Characterized by <i>ions only</i> (cations & anions) in solution (water).			
Weak electrolytes:	Characterized by <i>ions</i> (cations & anions) & <i>molecules</i> in solution.			
Non-electrolytes:	Characterized by <i>molecules</i> in solution.			
Conduct electricity well				
Conduct electricity poorly				
Do not conduct electricity				
11/14/07	Dr. Mack. CSUS	12		

Section 7.7: Solution Properties

Water on it's own does not conduct electricity well (the circuit is not completed)

Solutions with ions do conduct electricity well (the circuit is completed)

11/14/07

Dr. Mack. CSUS

11

COLLIGATIVE PROPERTIES OF SOLUTIONS

Colligative solution properties are properties that depend directly on the concentration of solute particles in the solution.

Experiments demonstrate that the *vapor pressure* of water (solvent) above a solution is lower than the vapor pressure of pure water at a given temperature.

When a solute is added to a solvent, the *boiling point* increase and the *freezing point* decreases.

Also, when a pure solvent is separated from a solution by a semi-permeable membrane, solvent molecules flow across the membrane towards the solvent side.

This phenomenon is know as osmosis.

16

Strong electrolyte solutions: Solute (i.e. the substance dissolved) is present as ions.				
example	s: NaCl(aq), HCl(aq) or NaOH(aq)			
Weak electrolyte solutions: Solute is incompletely ionized.				
examples:	acetic acid, $HC_2H_3O_2(aq)$ or ammonia water, NH_3 (aq)			
Non-electrolyte solutions: Solute does not ionize.				
example: ethanol, C_2H_5OH (aq); methanol, CH_3OH (aq) or sucrose, $C_{12}H_{22}O_{11}$ (aq)				
11/14/07	Dr. Mack. CSUS 15			

Boiling Point Elevation:

The *boiling point* of a solution is always higher than the boiling point of the pure solvent of the solution.

t_b (solution) > t_b (solvent)

The difference in boiling point between pure solvent and solution depends on the concentration of solute particles, and is calculated using the following equation:

$$\Delta t_b = nK_bM$$

$\Delta t_b = t_b(solution) - t_b(solver)$	nt)	$K_b = bp constant$			
M = the molarity of the solution		(depends on the substance)			
n = total number of particles in solution					
n = 1 for molecular compounds $n =$		= 2 for NaCl (Na ⁺ and Cl ⁻)			
11/14/07	Dr. Mack. CSUS	17			

Calculate the freezing point of a solution made up by adding and completely dissolving 4.52g sodium phosphate to 100.0 mL of water.

$$\Delta t_{f} = nK_{f}M$$
$$K_{f} = -1.86 \frac{^{\circ}C}{M}$$

step 1: Calculate the molarity of the solution step 2: Recognize that n = 4

$$Na_3PO_4(aq) \rightarrow 3Na^+(aq) + PO_4^{3-}(aq)$$

 $n = 3 + 1 = 4$

step 3: enter the values into the equaton

11/14/07

Dr. Mack. CSUS

Calculate the freezing point of a solution made up by adding and completely dissolving 4.52g sodium phosphate to 100.0 mL of water.

$$\Delta t_{f} = nK_{f}M \qquad n = 4 \qquad K_{f} = -1.86 \frac{^{\circ}C}{M}$$

$$\Delta t_{f} = 4 \times \left(-1.86 \frac{^{\circ}C + L}{mol}\right) \times 4.52 \frac{m}{g} Na_{3}PO_{4} \times \frac{1molNa_{3}PO_{4}}{163.94g} \times \frac{1}{100.0mL} \times \frac{10^{3}ml}{1L} \times \frac{10^{3}ml}{1L}$$

By spreading salt on the roadway, the freezing point of water is lowered, thus preventing ice formation or causing already solid ice to melt!

11/14/07

19

OSMOTIC PRESSURE OF SOLUTIONS

When solutions having different concentrations of solute are separated by a semi-permeable membrane, the solvent tends to flow across the membrane from a less concentrated solution towards a more concentrated solution in a process called *osmosis*.

11/14/07 Dr. Mack. CSUS 24

Analogously, the height increase Recall that pressure is related due to osmosis is like a pressure: to the height of a column of liquid: $\pi = nMRT$ $\pi = \text{osmotic}$ pressure (torr) Atmospheric 760 mm M = mols/Lpressure h + T = Kelvins $R = 64.2 \frac{L \cdot torr}{mol \cdot K}$ Mercury-filleo dish 11/14/07 Dr. Mack. CSUS 23