

Overall Polarity in molecules:

The polarity of the individual bonds in a molecule will determine the overall polarity of a molecule.

All *homonuclear* diatomic molecules a non-polar.

Notice the symmetry of the molecule:

When divided, the top and bottom as well as the left and right are mirror images of one another.

One also knows the molecule is non polar because the bond is non polar.

$$\Delta EN = 2.5 - 2.5 = 0$$

10-10-07

CSUS Chem 6A F07 Dr. Mack

3

Overall Polarity in molecules:

The polarity of the individual bonds in a molecule will determine the overall polarity of a molecule.

All *heteronuclear* diatomic molecules a non-polar.

Hydrogen iodide (HI)

Notice the symmetry of the molecule:

When divided, the top and bottom as well as the left and right are not mirror images of one another.

One also knows the molecule is polar because the bond is polar.

 $\Delta EN = 2.5 - 2.1 = 0.4$

10-10-07

CSUS Chem 6A F07 Dr. Mack

4

Dipole – Dipole Intermolecular Forces

As the polarity for a given set of molecules with similar molar masses increases, the boiling point increases.

Substance	Mol Mass (amu)	Dipole Moment (D)	bp (K)
CH ₃ CH ₂ CH ₃	44.10	0.1	231
CH ₃ OCH ₃	46.07	1.3	248
CH ₃ Cl	50.49	1.9	249
CH ₃ CN	41.05	3.9	355

Hydrogen Bonding: Special dipole-dipole interaction

H-bonding occurs between molecules containing N-H, O-H, or F-H groups

Dispersion Forces: Weakest of all intermolecular forces.

The forces that hold non-polar molecules together can be explained as follows:

Attractions arise from instantaneous, temporary dipoles formed due to electron motions.

The electron cloud of a molecule can be polarized to produce a short lived dipole that results in an attractive force.

<u>Chapt</u>	er 5: Chemi	ical React	ions:	
R	eactants	\rightarrow	Products	
Co	npounds		New Compounds	
	or	\rightarrow	or	
Μ	olecules		Molecules	
10-10-07	CSUS	Chem 6A F07 Dr	. Mack	32

Dispersion Forces:

As molar mass increases amongst non–polar molecules, bp and mp increase due to the increased polarizability of the molecule.

	Halogen	mp (K)	bp (K)	
	$\overline{F_2}$	53.5	85.0	
	$\overline{Cl_2}$	172.2	238.6	
	Br_2	265.9	331.9	
	I ₂	386.7	457.5	
10-10-07	CSUS Chem 6A F07 Dr. Mack			

31