Hw. week 5 Chem. 6A CSUS S05 Ch. 6

28. Formulas for:

(a)	sodium chromate	Na ₂ CrO ₄
(b)	magnesium hydride	MgH_2
(c)	nickel(II) acetate	$Ni(C_2H_3O_2)_2$
(d)	calcium chlorate	$Ca(ClO_3)_2$
(e)	lead(II) nitrate	$Pb(NO_3)_2$
(f)	potassium dihydrogen phosphate	KH_2PO_4
(g)	manganese(II) hydroxide	$Mn(OH)_2$
(h)	cobalt(II) hydrogen carbonate	$Co(HCO_3)_2$
(i)	sodium hypochlorite	NaClO
(j)	arsenic(V) carbonate	$As_2(CO_3)_5$
(k)	chromium(III) sulfite	$Cr_2(SO_3)_3$
(1)	antimony(III) sulfate	$Sb_2(SO_4)_3$
(m)	sodium oxalate	$Na_2C_2O_4$
(n)	potassium thiocyanate	KSCN

39. Naming compounds

- (a) $Ba(NO_3)_2$, barium nitrate
- (f) BiCl₃, bismuth(III) chloride
- (b) $NaC_2H_3O_2$, sodium acetate
- (g) NiS, nickel(II) suflide
- (c) PbI₂, lead(II) iodide
- (h) $Sn(NO_3)_4$, tin(IV) nitrate
- $(d) \qquad MgSO_4, \, magnesium \, sulfate$
- (i) Ca(OH)₂, calcium hydroxide
- (e) CdCrO₄, cadmium chromate

41. (a) $AgNO_3 + NaCl \longrightarrow AgCl + NaNO_3$

- (b) $Fe_2(SO_4)_3 + Ca(OH)_2 \longrightarrow Fe(OH)_3 + CaSO_4$
- (c) $KOH + H_2SO_4 \longrightarrow K_2SO_4 + H_2O$

Ch. 4

11.	(a)	physical	(d)	chemical
	(b)	physical	(e)	chemical
	(c)	physical	(f)	chemical

18. (a) potential energy

(d) kinetic energy

(b) potential energy

(e) potential energy

- (c) kinetic energy
- 21. (a) +

(d) -

(b)

(e)

(c) +

24. E = (m)(specific heat)(
$$\Delta t$$
)
= (65 g)(0.473 J/g°C)(95°C - 25°C)
= 2.2 × 10³ J

32.
$$E = (m)(\text{specific heat})(\Delta t)$$

= $(250. \text{ g})(0.096 \text{ cal/g}^{\circ}\text{C})(150.0^{\circ}\text{C} - 24^{\circ}\text{C})$
= $3.0 \times 10^{3} \text{ cal}$

35.
$$(7000. \text{ cal})(4.184 \text{ J/cal}) = 29290 \text{ J}$$

heat lost by coal = heat gained by water $x = \text{mass of coal in g}$
 $4.0 \text{ L H}_2\text{O} = 4.0 \times 10^3 \text{ g H}_2\text{O}$

ch. 5

1.		Element	Atomic number
	(a)	copper	29
	(b)	nitrogen	7
	(c)	phosphorus	15
	(d)	radium	88
	(e)	zinc	30

- 6. Isotopes contain the same number of protons and the same number of electrons. Isotopes have different numbers of neutrons and thus different atomic masses.
- 12. (a) The nucleus of the atom contains most of the mass since only a collision with a very dense, massive object would cause an alpha particle to be deflected back towards the source.
 - (b) The deflection of the positive alpha particles from their initial flight indicates the nucleus of the atom is also positively charged.
 - (c) Most alpha particles pass through the gold foil undeflected leading to the conclusion that the atom is mostly empty space.