CHEMISTRY 31

Fall, 2017 - Dixon

Homework Set 2.1 Solutions

 

Ch. 6: 8, 15-17, 19, 23, 25, 33, 36, 44, 49

8. For the reaction HCO3- ↔ H+ + CO32-, ΔG°  = +59kJ/mol at 298.15K.  Find the value of K for the reaction.

K = exp(-ΔG°/RT) = exp(-59000 J mol-1/(8.314 J mol-1 K-1*298.15 K)) = 5 x 10-11.

 

15.  What concentration of Fe(CN)64- (ferrocyanide) is in equilibrium with 1.0 μM Ag+ and Ag4Fe(CN)6(s).  Express your answer with a prefix from table 1-3.

Since it states “in equilibrium with”, no ICE table is needed.

Ksp = [Ag+]4[Fe(CN)64-]  =  8.5 x 10-45  = (1.0 x 10-6)4*x

x = 8.5 x 10-45/1.0 x 10-24  = 8.5 x 10-21 M = 8.5 zM = [Fe(CN)64-]

 

16.  Find [Cu2+] in a solution saturated with Cu4(OH)6(SO4) if [OH-] is fixed at 1.0 x 10-6 M.  Note that Cu4(OH)6(SO4) gives 1 mole of SO42- for 4 mol Cu2+.

 

                        Cu4(OH)6(SO4)(s) ↔ 4Cu2+ + 6OH- + SO42-       Ksp = 2.3 x  10-69

Initial                                                    0      1.0 x 10-6     0

Change                                                 +4x      +6x          +x

Equilibrium                                           4x    1.0 x 10-6     +x    (1.0 x 10-6 is fixed)

Note: since we know [OH-] at equilibrium is 1.0 x 10-6 M, we really did not need the ICE table, but the table is useful in remembering that the ratio of Cu2+ to SO42- should be 4:1 from the stoichiometry.

Ksp = 2.3 x  10-69 = [Cu2+]4[OH-]6[SO42-] = (4x)4(1.0 x 10-6)6x = (2.56 x 10-34)x5

x = (2.3 x  10-69/2.56 x 10-34)1/5 = 9.8 x 10-8 M

[Cu2+] = 4x = 3.9 x 10-7 M

 

17.  (a)  From the solubility product of zinc ferrocyanide, Zn2Fe(CN)6, calculate the concentration of Fe(CN)64- in 0.10 mM ZnSO4 saturated with Zn2Fe(CN)6.  Assume that Zn2Fe(CN)6 is a negligible source of Zn2+.

Zn2Fe(CN)6(s) ↔ 2Zn2+ + Fe(CN)64-               Ksp = 2.1 x 10-16 = [Zn2+]2[Fe(CN)64-]

At equilibrium, [Zn2+] = 0.10 mM (based on the assumption listed above)

[Fe(CN)64-] = 2.1 x 10-16/[Zn2+]2 = 2.1 x 10-16/1.0 x 10-8 = 2.1 x 10-8 M

(b)  What concentration of K4Fe(CN)6 should be in a suspension of solid Zn2Fe(CN)6 in water to give [Zn2+] = 5.0 x 10-7 M?

Ksp = 2.1 x 10-16 = [Zn2+]2[Fe(CN)64-] = (5.0 x 10-7 M)2[Fe(CN)64-]

[Fe(CN)64-] = 2.1 x 10-16/2.5 x 10-13 = 8.4 x 10-4 M

 

19.  A solution contains 0.0500 M Ca2+ and 0.0300 M Ag+Can 99% of Ca2+ be precipitated by sulfate without precipitating Ag+?  What will be the concentration of Ca2+ when Ag2SO4 begins to precipitate?

Ksp(CaSO4) = 2.4 x 10-5 = [Ca2+][SO42-]

Ksp(Ag2SO4) = 1.5 x 10-5 = [Ag+]2[SO42-]

It may not be clear which cation will precipitate first (since the Ksp values are similar).  This can be calculated by calculating minimum equilibrium sulfate concentrations to start precipitating out the cation (through rearranging the above equations).

For calcium sulfate, [SO42-] = Ksp(CaSO4)/[Ca2+] = 4.8 x 10-4 M

For silver sulfate, [SO42-] = Ksp(Ag2SO4)/[Ag+]2= 1.67 x 10-2 M, so calcium precipitates first (lowest concentration is the first to precipitate as sulfate concentration is increased).

When calcium has been 99% precipitated, 1% of the calcium will be left.  This means that [Ca2+] = 0.01*0.0500 M = 5.00 x 10-4 M; thus [SO42-] = 0.0480 M

The equilibrium [Ag+] = {Ksp(Ag2SO4)/[SO42-]}0.5 = 0.0177 M.  Since this is less than 0.0300 M (the initial silver concentration), 99% of Ca2+ can not be removed without precipitating Ag+.

The concentration of Ca2+ when [Ag+] starts precipitating is solved by:

[Ca2+] = Ksp(CaSO4)/[SO42-] = 2.4 x 10-5/1.67 x 10-2 = 1.4 x 10-3 M

 

23.  Identify Lewis acids in the following reactions:

a)      BF3 + :NH3 ↔ F3B--NH3+       BF3 is the electron pair acceptor (Lewis Acid)

b)      :F- + AsF5 ↔ AsF6-                  AsF5 is the electron pair acceptor (Lewis Acid)

 

25.  Given the following equilibria, calculate the concentration of each zinc species in a solution saturated with Zn(OH)2(s) and containing [OH-] at a fixed concentration of 3.2 x 10-7 M.

Zn(OH)2(sKsp = 3 x 10-16            Zn(OH)+  b1 = 1 x 104             Zn(OH)2(aq)  b2 = 2 x 1010

Zn(OH)3-  b3 = 8 x 1013                  Zn(OH)42-  b4 = 3 x 1015

Rxn 1: Ksp = 3 x 10-16 = [Zn2+][OH-]2 or [Zn2+] = 3 x 10-16/[OH-]2 = 2.9 x 10-3 M

Rxn 2: b1 = 1 x 104 = [Zn(OH)+]/[Zn2+][OH-] or [Zn(OH)+] = (1 x 104)(2.9 x 10-3)(3.2 x 10-7)

[Zn(OH)+] = 9 x 10-6 M

Rxn 3: b2 = 2 x 1010 = [Zn(OH)2(aq)]/[Zn2+][OH-]2 or

[Zn(OH)2(aq)] = (2 x 1010)(2.9 x 10-3 M)(3.2 x 10-7)2 =  6 x 10-6 M

Rxn 4: b3 = 8 x 1013 = [Zn(OH)3-]/[Zn2+][OH-]3 or

[Zn(OH)3-] = (8 x 1013)(2.9 x 10-3)(3.2 x 10-7)3 = 8 x 10-9 M

Rxn 5: b4 = 3 x 1015 = [Zn(OH)42-]/[Zn2+][OH-]4 or

[Zn(OH)42-] = (3 x 1015)(2.9 x 10-3)(3.2 x 10-7)4 = 9 x 10-14 M

 

33.  Identify the Bronsted-Lowry acids among the reactants in the following reactions.

(a) KCN + HI ↔ HCN + KI          acid = HI

(b) PO43- + H2O ↔ HPO42- + OH- acid = H2O

 

36  Calculate [H+] and pH for the following solutions:

a) 0.010 M HNO3        [H+] = 0.010 M (HNO3 is a strong acid), pH = -log(0.010) = 2.00

b) 0.035 M KOH         [OH-] = 0.035 M [H+] = 1.0x10-14/0.035 = 2.86 x 10-13 M, pH = 12.54

c) 0.030 M HCl           [H+] = 0.030 MpH = 1.52

d) 3.0 M HCl               [H+] = 3.0 MpH = -0.48

e) 0.010 M [(CH3)4N+]OH-         [H+] = 1.0 x 10-12 MpH = 12.00

 

44.  Write the Ka reaction for trichloroacetic acid, Cl3CCO2H, for anilinium ion, C6H5NH3+, and for lanthanum ion, La3+.

Cl3CCO2H (aq) ↔ Cl3CCO2- + H+;  C6H5NH3+ ↔ C6H5NH2 (aq) + H+

La3+ + H2O(l)  ↔ LaOH2+ + H+

 49.  Write the Kb reaction of CN-.  Given that the Ka value for HCN is 6.2 x 10-10, calculate the Kb.

Reaction = CN- + H2O HCN + OH-               

Kb = Kw/Ka = 1.0 x 10-14/6.2 x 10-10 = 1.6 x 10-5.

 

Ch. 7: 2, 7, 15                                                                                                

2.  Distinguish between the terms end point and equivalence point.

Equivalence point refers to the point in the titration when the reagents have been added to the exact stoichiometric ratio. End point refers to the point when the equivalence is detected.

 

7.  How many milliliters of 0.100 M KI are needed to react with 40.0 mL of 0.0400 M Hg2(NO3)2 if the reaction is Hg22+ + 2I- ↔ Hg2I2(s)?

n(KI)/n(Hg22+) = 2/1 or n(KI) = 2[Hg2(NO3)2]V(Hg2(NO3)2) = 2(0.040 mmol/mL)(40.0 mL)

n(KI) = 3.20 mmol = [KI]V(KI) or V(KI) = 3.20 mmol/(0.100 mmol/mL) = 32.0 mL

 

15.  A cyanide solution with a volume of 12.73 mL was treated with 25.00 mL of Ni2+ solution (containing excess Ni2+) to convert the cyanide into tetracyanonickelate(II):

                                                      4CN- + Ni2+Ni(CN)42-

The excess Ni is titrated with 10.15 mL of 0.01307 M ethylenediaminetetraacetic acid (EDTA):

                                                      Ni2+ + EDTA4-Ni(EDTA)2-

Ni(CN)42- does not react with EDTA.  If 39.35 mL of EDTA were required to react with 30.10 mL of the original Ni2+ solution, calculate the molarity of CN- in the 12.73 mL cyanide sample.

n(Ni2+)orig = n(Ni2+)reacted + n(Ni2+)excess and n(CN-)/n(Ni2+)reacted = 4/1

n(Ni2+)reacted = n(Ni2+)orig - n(Ni2+)excess

[Ni2+]origVorig = [EDTA]VEDTA

[Ni2+]orig = (0.01307 mmol/mL)(39.35 mL)/(30.10 mL) = 0.017086 M

n(Ni2+)orig = [Ni2+]origVorig = (0.017086 mmol/mL)(25.00 mL) = 0.42716 mmol

n(Ni2+)excess = (0.01307 mmol/mL)(10.15 mL) = 0.13266 mmol

n(Ni2+)reacted = 0.42716 mmol - 0.13266 mmol = 0.2945 mmol

n(CN-) = 4n(Ni2+)reacted = 1.178 mmol

[CN-] = 1.178 mmol/12.73 mL = 0.09254 M