River Processes

Drainage Basin Morphometry

Morphometry - the measurement and mathematical analysis of the
configuration of the earth’s surface and of the shape and dimensions of its
landforms.

Horton (1945) - drainage composition
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Drainage Basin Morphometry il
 E
Linear morphometric relationships g |
5
g
1}=
D,

Stream order

Analysis of Some Characteristics of the Mill Creek Drainage Network*

Dimension (a) (b) (c) (d) (e)
Average
Average Average Stream Channel
Stream Number of Length Basin Density Slope
Order (ft) Area (105 ft2) (mi/mi2) (tan < x 109)
1 364 6.97 5.45 396
2 993 33.73 7.02 123
3 3432 161.97 6.06 39
4 6283 747.14 5.66 10

Source: Morisawa (1962), Table 1.
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Analysis of Some Characteristics of the Mill Creek Drainage Network*

Dimension {a) (b) (c) (d) (e)
Average
Average Stream Channel
Stream Number of Basin Density Slope
Order Streams Area (105 ft2) (mi/mi2) (tan < x 109)
1 104 364 6.97 5.45 396
2 22 993 33.73 7.02 123
3 5 3432 161.97 6.06 39
4 1 6283 747.14 5.66 10

Source: Morisawa (1962), Table 1,



River Processes

Drainage Basin Morphometry

Areal morphometric relationships

log,, Dimension

Stream nrdar

Analysis of Some Characteristics of the Mill Creek Drainage Network*

Dimension {(a) (b)
Average
Stream Number of Length
Order Streams (ft)
1 104 364
2 22 993
3 5 3432
4 1 6283

(d) (e)
Average
Stream Channel
Density Slope
(mi/mi2) (tan < x 109)
5.45 396
7.02 123
6.06 39
5.66 10

Source: Morisawa (1962), Table 1,
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Analysis of Some Characteristics of the Mill Creek Drainage Network*

Dimension {a) (b) (c) (d) (e)
Average
Average Average Stream Channel
Stream Number of Length Basin Density Slope
Order Streams (ft) Area (105 ft2) (mi/mi2) (tan < x 109)
1 104 364 6.97 5.45 396
2 22 993 33.73 7.02 123
3 5 3432 161.97 6.06 39
4 1 6283 747.14 5.66 10

Source: Morisawa (1962), Table 1,
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DRAINAGE BASINS

Basin Morphometry relief morphometric relationships
T

Relief ratio
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Analysis of Some Characteristics of the Mill Creek Drainage Network* ! Streaa:'n order 3 B
Dimension (a) (b) (c) (d) (e)
Average
Average Average Stream Channel
Stream Number of Length Basin Density Slope
Order Streams (ft) Area (105 ft2) (mi/mi) (tan < x 109)
1 104 364 6.97 5.45 396
2 22 993 33.73 7.02 123
3 5 3432 161.97 6.06 39
4 1 6283 747.14 5.66 10

Source: Morisawa (1962), Table 1.
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River Processes

Drainage Basin Morphometry

Hypsometric analysis
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Ingredients of a hyposometric analysis. (A) Diagram showing how dimensionless
parameters used in analysis are derived. (B) Plot of the parameters to produce the
hyposometric curve.

(Strahler 1952b)
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River Processes

Drainage Basin Morphometry
River flow (discharge) conditions also exhibit (under appropriate conditions)

some degree of morphometry.
50-51 peak discharge event (15800 cfs (11/15-11/27))

YEAR
1950
1950
1950
1950
1950
1950
1950
1950
1950
1950
1950
1950
1950

18000.0
16000.0 ; *
14000.0 R™= 0'9827/
12000.0
cc
10000.0 - b0
8000.0 52.0
6000.0 - 357
013.3
4000.0 - R2=0.9945 360.0
2000.0 - 7 s
0.0 ‘ 94.3
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 (°72
57.3
11 75 762.0 1590.0 184.0 810.0  1643.3  226.3 90.0
11 26 588.0 1260.0 147.0 610.3  1293.3  178.7 150.3
11 27 481.0 1030.0 120.0 492.7  1053.3  148.0 123.3
11 28 409.0 870.0 103.0 445.0 950.0 134.5 111.5
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Drainage Basin Morphometry
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River Processes

Drainage Basin Morphometry

low flow season (6-1-51 to 9-1-51)
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River Processes

Drainage Basin Evolution - denudation
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River Processes

Drainage Basin Evolution - denudation
A number of interrelated geologic, hydrologic, and topographic factors cause the
magnitude of sediment yield to vary widely from region to region. The most
important of these are
e precipitation and vegetation,
* basin size,
» elevation and relief,

* rock type, and

* human activity.
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River Processes

Drainage Basin Evolution - denudation

Precipitation and vegetation
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River Processes

Drainage Basin Evolution - denudation

Basin size

Sediment yield (t/km?/yr)

50,000

10,000

Ganges/
U Yellowe |
1000 . Brahma
Yangtze
[ ]
Amazon e
100 5 .
sl
i .
10
o o
8]
1
1 10 100 1000 10,000

Drainage basin area (10%km?)

17



River Processes

Drainage Basin Evolution - denudation

Elevation and relief
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River Processes

Drainage Basin Evolution - denudation
Rocks atthe Earth’s Surface

Rock type
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River Processes

Drainage Basin Evolution - denudation

Human factor
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Changes in sediment yield and
channel behavior in one area under
various types of land use.

(Welman 1967)
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River Processes

Drainage Basin Evolution - denudation

Rates of denudation - difficult to do, because quantifying human impact is
vague. A valid estimate can be made only if

» the volume of sediment derived by erosive processes can be accurately
determined,

* the boundaries of the source area are definable, and

* the time interval of sediment accumulation can be ascertained within
reasonable limits.
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River Processes

Drainage Basin Evolution - denudation

Continent Chemical denudation® Mechanical denudation® Ratio of Specific
mechanical to ischarge
Drainage area  Solute yield  Drainage area  Solute yield  chemical (I/s/km?)
(106 km?) (t/km?/yr)  (10° km?) (t/km?/yr)  denudation
Africa ¥7:55 9.12 15.34 35 3.84 6.1
North America 21.5 33.44 1750 84 2.51 8.1
South America 16.4 29.76 17.90 Q7 3.26 21.2
Asia 31.46 46.22 16.88 380 8.22 12.5
Europe 8.3 4916 15.78¢ 58 1.18 97
Oceania 4.7 54.04 5.20 1,028¢ 19.02 16.1
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Drainage Basin Evolution - denudation
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River Processes

Drainage Basin Evolution - denudation

Annual suspended
290 sediment discharge
(million tonnes)
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River Processes

Drainage Basin Evolution - denudation

Sediment budgets

To make a complete sediment budget analysis one must identify and quantify:

 sediment mobilization (processes that initiate motion and move sediments
any distance),

e sediment production (sediment reaching or given access to a channel),
and

 sediment yield (sediment actually discharged from the basin).
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River Processes

Drainage Basin Evolution - denudation

INPUT
W Weathering

TRANSFER

MWa Alplne Mass Wasting and Transport AVFa

MWp Paraglaclal Mass Wasting AG
Eroslon and Transport
AM
SE  Supra- and Englaclal Eroslon
AE
SUB Subglaclal Eroslon
AL
E  Eollan Eroslon and Transport
AT
F  Fluvial (Meltwater)
Erosion and Transport AcB

OQUTPUT
OUT Calchment Output

SIMPLE SEDIMENT BUDGET MODEL FOR WESTERN HIMALAYA

STORAGE

G Geocryological Eroslon and Transport  ANGA Nonglaclal Alpine

(Ablation) Valley Floor
Glaclal (Transport)
Moralne

Eollan

Lacustrine

Terrace

Channel and Braldplain

Figure 2 Sedi nent-budget model for the Western Himalaya, based on a compilation of the work by
Caine, 1974; Church and Rydex, 1972; Clark, 1987; Harbor and Warburton, 1993; and Slaymaker and
‘McPherson, 1977. This model emphasizes mass wasting, glacial, and fluvial transfers and storages.
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River Processes

Drainage Basin groundwater hydrology
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River Processes

Drainage Basin groundwater hydrology

The groundwater profile:

a0

Zone of moisture
Vadose zone
Capillary fringe.
Saturated zone
Water table

Sand grain
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River Processes

Drainage Basin groundwater hydrology — movement of groundwater
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Contour map of 1976 water table, Gosford Quadrangle, Kern County, California.
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River Processes

Drainage Basin groundwater hydrology — movement of groundwater

Aquifers
1. unconfined aquifers
2. agquitards
3. confined aquifers
4. piezometric surface




River Processes

Drainage Basin groundwater hydrology — movement of groundwater
Aquifers

5. artesian flow

< APPROXIMATELY 1, 300AM (BOOMILES) =

-

NATLURAL fo CHARGE
IN SPRINGS AROLNO

RECHARGE AREA
MARGINS oF BASIN o
FLOWING ARTESIAN WELLS P om
h_ 7o 7
/ L—-—— \ ~ =1 [ o v | sea cever
O - CONEINING N o N
' BEDS T
) 3

-"."'-'--"-'—"""__,... o

— —=500m

AGU/FER PORIERES

R /

— =/,000m

ConFINING BELS—| !

— =/ 500m

— =Z,000m

— ~2,500m

- —=3,000m
W
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River Processes

Drainage Basin groundwater hydrology — movement of groundwater
Aquifers
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Cross-sectional view of alluvial sediments just west of Sacramento, California.
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River Processes

Drainage Basin groundwater hydrology — movement of groundwater

104°

The Ogallala aquifer —
largest freshwater
aquifer in the western
hemisphere.

36° Water-level change,
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River Processes

Drainage Basin groundwater hydrology — porosity and permeability
Permeability — ability of a material to transmit water — Darcy’s Law:

Porosity (n) - volume of voids relative to the volume of total.

n = Vv/Vt

where:
Vv refers to the volume of the voids (liquid and gas
phases), and
Vt refers to the total volume of a representative volume
of rock.
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River Processes

Drainage Basin groundwater hydrology — porosity and permeability

Table 5.1 Range of Permeabillity Values for Different Soll Material

Permeability
Fi3/Fi2/Day (ft/day)
108 104 108 102 10! 107! 102 102 104 10—
| | | | | | | | | |
Fi*/Fi2/Min (ft/min)
10! 107! 10-2 10-3 104 108 10~ 107 10-¢

| | | ] | | I | |

Gal/F2/Day (gal/ft2/day)
108 104 108 102 10! l 10-! 10-2 10-3 104
| | | | | J I | I
Ms?/M?/Day (m/day)
104 10% 102 10° | 107! 10-2 103 104 10-8
| | | | | ! | ! |

Relative Permeability

Very High High Moderate Low Very Low

Representative Materials

Clean gravel — Clean sand and sand — Fine sand — Silt, clay, and mixtures — Massive clay
and gravel of sand, silt, and clay

Source: Modified from USBR, 1981.
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River Processes

Drainage Basin groundwater hydrology — movement of groundwater

Aquifers
Groundwater/surface water interactions
Water tables and pumping
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COARSE SAND AND GRAVEL HIGH PERMEABILITY

LOW PERMEABILITY

Runoff cycle ends as rain stops and landscape begins to dry out (transpiration, T: evapo-

ration. E).

3 FALLING STAGE

£ RETURN TO LOW-MATER FLOW

Bank storage.
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