Drainage Basin Morphometry

Morphometry - the measurement and mathematical analysis of the configuration of the earth's surface and of the shape and dimensions of its landforms.

Horton (1945) - drainage composition

Drainage Basin Morphometry Shreve (1967)

Analysis of Some Characteristics of the Mill Creek Drainage Network*

Dimension	(a)	(b)	(c)	(d)	(e) Average	
Stream Order	Number of Streams	Average Length (ft)	Average Basin Area (10 ⁵ ft ²)	Stream Density (mi/mi²)	Channel Slope (tan < x 10 ³)	
1	104	364	6.97	5.45	396	
2	22	993	33.73	7.02	123	
3	5	3432	161.97	6.06	39	
4	1	6283	747.14	5.66	10	

Stream order

Drainage Basin Morphometry

Analysis of Some Characteristics of the Mill Creek Drainage Network*

Dimension	(a)	(b)	(c)	(d)	(e) Average	
Stream Order	Number of Streams	Average Length (ft)	Average Basin Area (10 ⁵ ft ²)	Stream Density (mi/mi²)	Channel Slope (tan < x 10 ³)	
1	104	364	6.97	5.45	396	
2	22	993	33.73	7.02	123	
3	5	3432	161.97	6.06	39	
4	1	6283	747.14	5.66	10	

Drainage Basin Morphometry Areal morphometric relationships

Analysis of Some Characteristics of the Mill Creek Drainage Network*

06

Dimension	(a)	<i>(b)</i>	(c)	(d)	(e) Average Channel Slope (tan < x 10 ³)	
Stream Order	Number of Streams	Average Length (ft)	Average Basin Area (10 ⁵ ft ²)	Stream Density (mi/mi²)		
1	104	364	6.97	5.45	396	
2	22	993	33.73	7.02	123	
3	5	3432	161.97	6.06	39	
4	1	6283	747.14	5.66	10	

2

Stream order

3

Analysis of Some Characteristics of the Mill Creek Drainage Network*

0

Dimension	(a)	(b)	(c)	(d)	(e) Average Channel Slope (tan < x 10 ³)	
Stream Order	Number of Streams	Average Length (ft)	Average Basin Area (10 ⁵ ft ²)	Stream Density (mi/mi²)		
1	104	364	6.97	5.45	396	
2	22	993	33.73	7.02	123	
3	5	3432	161.97	6.06	39	
4	1	6283	747.14	5.66	10	

(b)

(a)

(C

(d

2

Stream order

(e)

3

DRAINAGE BASINS

Basin Morphometry relief morphometric relationships

Drainage Basin Morphometry

Relief ratio

Stream Profiles

Drainage Basin Morphometry

Hypsometric analysis

Ingredients of a hyposometric analysis. (A) Diagram showing how dimensionless parameters used in analysis are derived. (B) Plot of the parameters to produce the hyposometric curve. (Strahler 1952b)

Drainage Basin Morphometry

River flow (discharge) conditions also exhibit (under appropriate conditions) some degree of morphometry.

Drainage Basin Morphometry

Drainage Basin Morphometry

- A number of interrelated geologic, hydrologic, and topographic factors cause the magnitude of sediment yield to vary widely from region to region. The most important of these are
 - precipitation and vegetation,
 - basin size,
 - elevation and relief,
 - rock type, and
 - human activity.

Drainage Basin Evolution - denudation

Precipitation and vegetation

Changes in sediment yield and channel behavior in one area under various types of land use. (Wolman 1967)

Basin size

Drainage Basin Evolution - denudation

Elevation and relief

Drainage Basin Evolution - denudation

Human factor

Changes in sediment yield and channel behavior in one area under various types of land use. (Wolman 1967)

Drainage Basin Evolution - denudation

Rates of denudation - difficult to do, because quantifying human impact is vague. A valid estimate can be made only if

- the volume of sediment derived by erosive processes can be accurately determined,
- the boundaries of the source area are definable, and
- the time interval of sediment accumulation can be ascertained within reasonable limits.

Continent	Chemical denuc	lation ^a	Mechanical den	udation ^b	Ratio of	Specific discharge (I/s/km²)	
	Drainage area (10 ⁶ km²)	Solute yield (t/km²/yr)	Drainage area (10 ⁶ km²)	Solute yield (t/km²/yr)	mechanical to chemical denudation		
Africa	17.55	9.12	15.34	35	3.84	6.1	
North America	21.5	33.44	17.50°	84	2.51	8.1	
South America	16.4	29.76	17.90	97	3.26	21.2	
Asia	31.46	46.22	16.88	380	8.22	12.5	
Europe	8.3	49.16	15.78 ^d	58	1.18	9.7	
Oceania	4.7	54.04	5.20	1,028 °	19.02	16.1	

Drainage Basin Evolution - denudation

Sediment budgets

To make a complete sediment budget analysis one must identify and quantify:

- sediment mobilization (processes that initiate motion and move sediments any distance),
- sediment production (sediment reaching or given access to a channel), and
- sediment yield (sediment actually discharged from the basin).

Drainage Basin Evolution - denudation

OUTPUT

OUT Catchment Output

Figure 2 Sedi nent-budget model for the Western Himalaya, based on a compilation of the work by Caine, 1974; Church and Ryder, 1972; Clark, 1987; Harbor and Warburton, 1993; and Slaymaker and McPherson, 1977. This model emphasizes mass wasting, glacial, and fluvial transfers and storages.

Drainage Basin groundwater hydrology

Drainage Basin groundwater hydrology

The groundwater profile:

- 1. Zone of moisture
- 2. Vadose zone
- 3. Capillary fringe.
- 4. Saturated zone
- 5. Water table

Drainage Basin groundwater hydrology – movement of groundwater

Equipotential surfaces

Contour map of 1976 water table, Gosford Quadrangle, Kern County, California.

Drainage Basin groundwater hydrology – movement of groundwater

Aquifers

- 1. unconfined aquifers
- 2. aquitards
- 3. confined aquifers

Drainage Basin groundwater hydrology – movement of groundwater Aquifers

5. artesian flow

Generalized east-west cross-section of Great Artesian Basin

Drainage Basin groundwater hydrology – movement of groundwater

Cross-sectional view of alluvial sediments just west of Sacramento, California.

Drainage Basin groundwater hydrology – movement of groundwater

Drainage Basin groundwater hydrology – porosity and permeability Permeability – ability of a material to transmit water – Darcy's Law:

Porosity (*n*) - volume of voids relative to the volume of total.

n = Vv/Vt

where:

Vv refers to the volume of the voids (liquid and gas phases), and

Vt refers to the total volume of a representative volume of rock.

Drainage Basin groundwater hydrology – porosity and permeability

			F	Permeo t ³ /Ft ² /Day	bility (ft/day	y)			
105 10	14 10) ³ 10) ² 10 ¹	1	10-1	10-2	10-3	10-4	10-5
			Rocktor k	Ft ³ /Ft ² /	Min (ft/	min)	ente nambe		I
10'		י-10 ו	10-2	10-3	10-4	10-5	10-6	10-7	10-4
	•		Ģ	al/Ft²/Da	y (gal/	ft²/day)	a Statiga et Stati		
10 ⁵	104	10 ³	10²	10'		10-1	10-2	10-3	10-4
				Ms ³ /M ² /De	ay (m/c	day)	Provinsi Salah		
10 ⁴	10 ³	10²	י10 ¹	10	-1	10-2	10-3	10-4	10-5
			Re	elative Per	meabil	lity			
Very High		High		Mode	erate		Low		Very Low
			Rep	oresentativ	e Mate	orials			
Clean grav	el — Clé an	ean sand d gravel	and sand	— Fine so	and —	Silt, clay, of sand, s	and mixtur lit, and cla	es — Ma y	ssive clay

Table 5.1 Range of Permeability Values for Different Soil Material

Source: Modified from USBR, 1981.

Drainage Basin groundwater hydrology – movement of groundwater

Aquifers

Groundwater/surface water interactions Water tables and pumping

Runoff cycle ends as rain stops and landscape begins to dry out (transpiration, T; evaporation, E).

Bank storage.

links

