#### **Sediment in Channels**

Although most energy in a stream is dissipated by turbulence, a small part is used in the important task of eroding and transporting sediment. Poorly understood and yet significantly important.



## **Sediment in Channels**

- Suspended load
- Bedload



#### **Sediment in Channels**

- Entrainment processes that initiates the bursts of motion experienced by any particle
- **Competence** the size of the largest particle a stream can entrain under any given set of hydraulic conditions.

Is very difficult to determine however for several reasons:

- 1. particles are entrained by a combination of fluvial forces
- 2. flow velocity is neither constant nor easily measured, and,
- 3. sediment of the same size may be packed together differently

#### **Sediment in Channels**

One method used to represent the flow conditions in competence relationships, is measuring the *critical shear stress*. It is proportional to the depth-slope product and can be expressed by the DuBoys equation for boundary shear:

# $\tau_c$ = $\gamma * R * S$

where  $\tau_c$  = critical shear stress  $\gamma$  = specific weight of the water R = hydraulic radius S = slope

#### **Sediment in Channels**

Researchers have proposed that entrainment and transportation of bedload may be analyzed in terms of stream power.

Stream power is defined as:

# $\omega = \gamma^* Q * S$

Where:  $\omega$  = stream power,  $\gamma$  = specific weight of the water Q = discharge, and S = slope

#### **Sediment in Channels**

**Bank erosion -** the process of entrainment determine the type and magnitude of erosion that occurs on the channel floor.

fluvial entrainment promotes bank erosion in two ways:

- corrasion shear stress generated by water flow operates on all surfaces, and
- Cantilevers differential corrasion produces overhangs which collapse.

#### Sediment in Channels Bank erosion

*weakening and weathering* - tends to reduce the strength of bank materials and thereby promote instability and failure.

The most important control on weakening of bank material is the *soil moisture condition*.

- 1. reduce strength within the bank and
- 2. act on the bank surface to loosen and detach particles and their aggregates.

#### **Sediment in Channels**

#### **Bank erosion**

Other components that weaken and weather bank materials include:

- 1. positive pore pressures,
- 2. cohesive layers below non-cohesive layers
- 3. piping (preferential flow)
- So, in many instances, riverbank erosion has nothing to do with rivers. Often it is a mass movement thing controlled by the texture and stratigraphy of floodplain sediments.

### **Sediment in Channels**

#### **Deposition**

- If entrainment of sediment represents a threshold of erosion, a similar threshold must exist when sediment in transport is deposited.
- A long episode in which less sediment leaves the bed than is returned results in a distinct period of *aggradation*



## **Sediment in Channels**

#### **Deposition**

A long episode in which more sediment leaves the bed than is returned results in a distinct period of *degradation*.



#### **Sediment in Channels**

#### **Deposition**

Fluvial deposition is important to geomorphology in several ways.

- 1. On a long-term basis, continued deposition results in landforms that reflect distinct periods of geomorphic history glacial chronologies.
- 2. On a short-term basis, deposition creates bottom forms such as dunes, bars, and riffle-pool sequences that are closely interrelated with channel pattern and the character and distribution of flow within the channel ecological reconstructions.
- 3. Finally, short-term and long-term mechanics of deposition have implications beyond the boundaries of geomorphology gold mining and contaminant plume migration.

#### Sediment in Channels Frequency and magnitude of river work

Geomorphic work is usually estimated in one of two ways.

- 1. The work done by any river can be estimated by the amount of sediment it transports during any given flow
- 2. Assess the condition under which rivers make adjustments

#### Dominant discharge

(bankful discharge) channel morphology is adjusted during flows having a recurrence interval of between 1.1 and 2 years.



#### The quasi-equilibrium condition

River variables are mutually interdependent, meaning that a change in any single parameter requires a response in one or more of the others.



Hydraulic geometry relationships of river channels comparing variations of width, depth, velocity, suspended load, roughness, and slope to discharge at a station and downstream.

(Leopold and Maddock 1953)

#### The quasi-equilibrium condition Hydraulic geometry - velocity

Velocity increases downstream. This doesn't fit with what most geologists think. Remember Manning's equation.



#### The quasi-equilibrium condition Hydraulic geometry - Channel shape

Logic tells us that unless velocity is completely unrestrained, rivers with a large mean annual discharge have greater cross-sectional areas than streams with smaller average flows.



#### The quasi-equilibrium condition Hydraulic geometry - Channel shape

Schumm (1960) present arguments that suggested that channel shape as defined by W/D, is determined primarily by the nature of the sediment in the channel perimeter.



#### The quasi-equilibrium condition Hydraulic geometry - Channel shape



#### **Channel Patterns**

Rivers also have characteristic forms extending over long stretches of their total length which, when observed in plain view, display a distinct geometric pattern.



#### **Channel Patterns**

Patterns are usually classified as *straight, meandering*, or *braided*,

*sinuosity -* the ratio of stream lengt (measured along the center of th channel) to valley length (measured along the axis of the valley).

# **Sinuosity of Natural Channels**



## **Channel Patterns**

# Straight channels

- alternate bars
- <u>thalweg</u>



## **Channel Patterns**

# Straight channels

- riffles
- Pools



## **Channel Patterns**

#### Straight channels

But shouldn't the pools eventually fill up?

#### **Convergent flow**

## **Divergent flow**

Schematic diagram of convergent flow and secondary circulation over a pool (A) and divergent flow and secondary circulation over a riffle (B) in a straight channel.







### **Channel Patterns**

# Meandering channels



www.hi.is/~oi/siberia\_photos.htm



•

•

#### **Channel Patterns**

# Meandering channels



#### **Channel Patterns**

#### Meandering channels

Most analyses of river energy indicate that meandering streams are probably closer to equilibrium condition than straight streams because:

- 1. meandering tends to dissipate energy in equal amounts along the length of the channel and
- 2. under the constraints of (1), meandering tends to minimize the total energy expenditure (to do the least work) or the rate of energy expenditure.

### **Channel Patterns**

**Braided channels** - division of a single trunk channel into a network of branches and the growth and stabilization of intervening islands.

- Braided zones are usually steeper and shallower;
- Total width is greater
- Changes in channel positions are likely to be extremely rapid



#### **Channel Patterns**

# Braided channels

The origin of braids

- Erodible banks
- Sediment transport and abundant load
- Rapid and frequent variations in Q

#### **Channel Patterns**



**Rivers, Equilibrium and Time** 

Time span of consideration



**Rivers, Equilibrium and Time** 

Adjustment of Gradient



# Rivers, Equilibrium and Time Adjustment of Gradient

• knickpoint



Rivers, Equilibrium and Time Adjustment of Shape and Pattern



# links

