
DATA STRUCTURES MIS 102 CHRISTENSON

 - 1 -

VI. INTRODUCTION TO DATA STRUCTURES
A. General Concepts
B. Elementary Data Concepts
C. Other Basic Data Concepts
D. Dense Lists Revisited
E. Restricted (special types) Lists

1. Stacks
2. Queues

F. Linked Lists

A. General Concepts

1. “A data structure is a named list of related data with one or more logical

relationships existing among them.”
The files and the tables of Assignment 2 are examples of data structures.

2. “An elementary data item represents an element that cannot be split into
components. It can be addressed and accessed by use of an identifier (e.g.,
a data-name).”
Example: The lowest level field is an elementary data item.

B. Elementary Data Structure Concepts

1. LIST: “A one-dimensional structure of a collection of data objects,
usually of the same type”. (NOTE: Nothing has been said about how the
list is constructed or stored.)

2. DENSE LIST: “The elements of a dense list are located in contiguous

storage locations”. That is, the elements are stored right next to one
another. The files and the elements in our tables we have used so far are
good examples of dense lists.

C. Other basic Data Concepts

We have been stressing that the data-names must reflect the nature of the data it
represents. Thus, the data-name (if properly chosen) can be considered to be an
attribute.

1. DATA: Value or values, but with no intrinsic meaning.

2. INFORMATION: Data with attributes and organization

a. Used to describe objects or entities
b. One or more attribute-value pairs are needed to describe an entity.
Thus, in our applications, the properly chosen data-name and value stored
under that name represent information.

DATA STRUCTURES MIS 102 CHRISTENSON

 - 2 -

3. VECTORS.
1. “A term which describes a one-dimensional data storage with

contiguous storage locations”. For example, the elements defined for a
table in COBOL are contiguous – one after another in physical
locations. NOTE: Nothing is implied about the organization or how
any data list might be stored.

2. A vector has a fixed number of elements, although all elements may
not be utilized.

3. A vector requires a positive integer (such as that contained in a
subscript or in an index) the value of which corresponds to the relative
position of the re-occurring element of the structure (i.e., the vector).

We generally refer to such a vector as a HOST VECTOR in that it may
be the “host” to one or more lists. That is, one or more lists may
simultaneously stored in a host vector.

The creation of a host vector in COBOL is accomplished by defining a
one-dimensional table. In so doing, we are simply defining a set of
storage locations where we may place one or more lists. We may not
use all of the table elements, nor are we required to do so.

D. Dense Lists Revisited

1. General View
Consider an ordinary sequential file similar to the ones we have used in
the past. All access is restricted to physical order. Consequently, one
must proceed through all preceding records to get to a desired record.

2. Advantages
- Simple to create
- Simple logic to search; simply move along the physical positions,

reading one data element at a time, examining each one.
- Efficient use of storage space; there are no empty data storage

elements. It has a high “data density”.
- It needs no auxiliary data structure or special procedures to process it.

3. Disadvantages
- Requires a relatively long time to search any sequential list. The

average number of “looks” required when searching a sequential list
(of any type) is equal to (n + 1)/2, where n is the number of items in
the list.

- If the dense list is ordered, it is difficult to add or delete data elements
(records if a file) and to maintain an ordered list and to keep the list
dense. Several steps are involved in processing adds or deletes.

DATA STRUCTURES MIS 102 CHRISTENSON

 - 3 -

4. Appropriate Use

- Efficient processing when a large percentage of elements (e.g.,
records) are processed during a run.

- If a list is ordered, the data elements/records may be processed in the
natural order of the list/file.

- Effective when adds and deletes are relatively infrequent, i.e., the data
is relatively “non-volatile”. (These operations are often handled by a
separate operation.)

5. Sorting (ordering)

The elements in the dense list are arranged in logical order by arranging
them in physical order based on the values of a specific key. This will
enhance processing efficiency. (NOTE: We have examined already a
form of the exchange sort in the BUBLSORT program of Assignment 1.)

E. Restricted Forms of Lists – These allow only certain operations. (We will use

dense lists in our examples, but the assignment will use linked list
implementations.)

1. STACK

All additions and deletions are performed at one end of the list. It is
customary to call this the top or the head of the stack. A separate data
item called a STACK POINTER contains the “address” of the top element
of the stack.

 If we consider the stack to be in a table, the value of the STACK
POINTER is used as a subscript. It contains the occurrence number (i.e.,
the location) of the element at the top of the stack. The value of this
pointer will change with the addition and with the deletion of an element.

The operation to place a new element on the stack is called a PUSH, just
as one PUSHes a plate on to the top of the stack of plates in a buffet.
The deletion of an element is called a POP. These are the only two
operations allowed on a stack.

 These stack operations can be summarized by Last In – First Out.

2. QUEUES
A list for which the removal of an element takes place only at the top or
the head of the list, and the addition of an element takes place only at the
bottom or the tail of the list. Consequently, we need a “pointer” to hold
the address (i.e., the location) of the element at the “head” of the queue,
and another pointer the hold the address of the element at the “tail” of the
queue. These are often have names like Q-HEAD-PTR and

DATA STRUCTURES MIS 102 CHRISTENSON

 - 4 -

Q-TAIL-POINTER.

We experience queues when we wait in line for the check-out stand at the
grocery store, or waiting in line at the bank. In England, they use the
phrase to “queue up”, meaning to get in line.

These are the only operations allowed for a queue. They may be
characterized as First In – First Out.

Note that, with both the stack and the queue, the data in these respective lists are
not ordered. “Ordered-ness” is rarely a characteristic of these “restricted” lists.

F. LINKED LISTS

1. “No other logical data structure is more important than a linked list
because most other logical data structures use extensions of the linked list
(structure)” (from Ellzey).

The linked list does not have the physical order of a dense list. It is
logically connected, but not physically connected by adjacent, physical
positions. (A dense list is logically connected because of the physical
arrangement of the elements.)

In a linked list, the data elements are “linked” from one to another. This is
accomplished by providing in the list element the “address” or location of
the next logical element.

 (data)

 (link address)

Consequently, all the elements belonging to the linked list are,
conceptually, chained together. The connecting links are the addresses in
each element.

A separate data-name is required to store the address (location) of the first
element of the linked list. It is frequently given a data-name similar to
LIST-HD-PTR.

Since a linked list is still a list, most dense list structures (e.g., data lists,
stacks, queues) and processes (e.g., searches, adds, deletes) can be
effectively implemented with linked lists.

DATA STRUCTURES MIS 102 CHRISTENSON

 - 5 -

In a linked list, the physical order is not the logical order

When one moves from one element to the next in a linked list, one uses the
link address contained in the current item to determine the location of the
next logical item. (With a dense list, one simply “moves” to or reads the
next item/record that is located in the next physical location.)

