Skin Senses: Touch, Haptics, Nociception, Vestibular System

Receptors

- The receptor cells in the skin are (mostly) called *mechanoreceptors*, and *transduce mechanical force*.
 - Mechanical force is any kind of physical prodding, pushing, stretching, pulling, etc.
 - Most of these cells live a little ways under your skin in the *dermis*, the second layer of skin (unlike the *epidermis*, which consists of dead cells, the dermis is alive.)

- •Mechanoreceptors (cont.)
 - There are two main varieties of mechanoreceptor:
 - Slowly adapting mechanoreceptors continue to fire for a long time, as long as they are continually being stimulated.

 Rapidly adapting mechanoreceptors fire only briefly, right after a stimulus disturbs the skin, and then stop firing.

- •Mechanoreceptors (cont.)
 - Each mechanoreceptor has a receptive field, that region of skin that may activate the receptor if stimulated.
 - With more receptor cells, there are smaller receptive fields, and with few receptor cells, there are larger receptive fields.
 - Receptor cells project into the spine, and up into the brain.
 - The brain has a particular region, the somatosensory cortex, devoted to processing touch input.

- •Mechanoreceptors (cont.)
 - Somatosensory cortex (cont.)
 - Regions on your skin are mapped into S.C., so that, if a place on your skin is touched, you'll see activation in the corresponding region of S.C.

Prown & Benchmark Introductory Psychology Electronic Image Bank copyright © 1995 Times Mirror Higher Education Group, Inc.

Sensory Area

The critter drawn on the left around the brain is referred to as a homunculus ("little man").

- •Mechanoreceptors (cont.)
 - Somatosensory cortex (cont.)
 - S.C. Is *topographically mapped*. This means that (most of the time) points near each other on your skin are near each other in S.C.
 - Regions on your skin that have high receptor density (and hence large amounts of somatosensory cortex devoted to them) will be sensitive to a *two-point acuity test*.
 - Two-point acuity test: using calipers, pins, or toothpicks (or something) stimulate two points on a participant's skin. Can the participant tell it's two points? If not, the two points are below threshold.

- •*Kinesthesis, Haptic perception*
 - Kinesthesis is the perception of whether your body is moving or stationary, as well as the perception of how your limbs are arranged when you can't see them.
 - Your sense of kinesthesis (often called proprioception) comes from *muscle spindle* cells located in muscles and joints.
 - These spindle cells are stretched by movement; the stretching causes neural firing.
 - Spindle cells then project into the spine, and then the brain.

- •Kinesthesis, Haptic perception (Cont)
 - "Pride and a Daily Marathon"
 - Ian Waterman, at age 19, lost his sense of proprioception (and light touch) due to a viral infection.
 - Initially, he collapsed to the floor, unable to move. Although the neurons never recovered, over the course of years he taught himself to use vision as a replacement for proprioception – he can walk unaided.
 - Still, if the lights go out unexpectedly (depriving him of his sense of vision), he collapses to the floor.

- •Kinesthesis, Haptic perception (Cont)
 - Haptic perception: the combination of touch and kinesthesis that allows us to identify objects.
 - Exploration of three-dimensional objects with the hand (either via touch or *wielding*
 - Tadoma: method of speech perception using only hands placed on "articulators:" lips and neck.

- •*Kinesthesis, Haptic perception (Cont)*
 - Wielding: you can perceive certain object properties simple by holding and moving an object.

- Nociception and pain
 - What is pain?
 - It's complicated
 - "Unpleasant sensory and emotional experience associated with actual or potential tissue damage." (Merskey, 1986)
 - Often useful because it tells you when you're in some kind of danger. (Melzack and Wall, 1988: a woman born without a well-functioning sense of pain dies at age 29 because she had not detected various injuries that then became infected.)

- •Nociception and pain
 - Pain receptors (nociceptors) are free nerve endings in the skin (in epidermis and subcutaneous fat)
 - Pain can also occur when normal skin receptors fire and the central nervous system pain pathways respond (as a result of injury or disease)
 - For example, *phantom limb pain*: perceived pain in an amputated arm or limb

- •Nociception and pain
 - Top-down influences on pain
 - Placebo: people report relief from pain after taking only a sugar pill, if they believe it's morphine – probably works because your body can produce endogenous opiates (Petrovic, et. al. 2002)
 - Acupuncture: long needles inserted into different sites on the body. Don't directly interfere with nociceptors. Seems to be effective (Mamtani and Cimino, 2002). Also probably releases opiates

- •Nociception and pain
 - Top-down influences on pain
 - *expectation*: Weisenberg, 1977. Surgical patients
 - gp 1: told what kind of pain to expect, instructed to relax to alleviate pain.
 - gp 2: no info.
 - result: gp 1 left hospital 2.7 days earlier, and requested fewer painkillers.

- •Nociception and pain
 - Top-down influences on pain
 - *emotional distraction*. deWeid & Verbaten
 - (2001). 3 gps (all males)
 - gp 1: view positive pictures attractive women, sports, etc.
 - gp 2: view neutral pictures household objects, nature scenes, people.
 - gp 3: view negative pictures burn victims, accidents

- •Nociception and pain
 - All three groups immersed hands in 2± C water, told to withdraw hand when it began to hurt.

• results:

- orientation perception
 - vestibular system for perceiving orientation and acceleration.
 - simple invertebrate system:

- orientation perception
 - vestibular system
 - Human vestibular system is similar.

- orientation perception
 - vestibular system
 - Depends on saccule, utricle, semicircular canals, located in inner ears.
 - *saccule* recognize motion up-down
 - *utricle* recognize front-back or left-right
 - Semicircular canals three canals are located in different planes (think depth,width, height); allows recognition of rotation in any of three directions.

- orientation perception
 - vestibular system
 - S emicircular canals
 - C upula

• Fluid in the canals can push the cupula in different directions.

orientation perception

- vestibular system
 - compensatory eye movements. nerve fibers go from canals to eye muscles. result in eye movements in opposite direction of rotation – helps keep eyes focused on an object fixed in space while rotating.
 - *dizziness from alcohol*: alcohol gets into cupola, alters density of liquid inside.

- •orientation perception
 - vestibular system
 - *Motion sickness*: motion information signaled by vision is not matched with motion information signaled by vestibular sense.
 - Occurs more for up-down movements.
 - shutting your eyes is a fair way of dealing with the problem.
 - Wrist-bands, magnets, etc. seem not to work, except as placebos.
 - Dramamine, meclizine are effective ways to prevent motion sickness

List of terms, section 2

Transduction	Nociceptors
Mechanoreceptors	Phantom lim
Dermis	Top-down in
Epidermis	Placebo
Slowly adapting mechanoreceptors	Acupuncture
Rapidly adapting mechanoreceptors	Expectation
Receptive field	Emotional di
Somatosensory cortex	Vestibular S
Topographic mapping	Statolith
Two-point acuity test	Saccule
Kinesthesis, haptic perception	Utricle
Muscle spindle cells	Semicircular
Pride and a Daily Marathon	Cupula
Tadoma	Compensato
Wielding	Dizziness fro
nociception	Motion Sickr

om limb pain own influences on pain 00 ncture tation nal distraction ular System th е ircular canals ensatory eye movements ess from alcohol Sickness